摘要:23.如图.在平面直角坐标系中.已知矩形ABCD的三个顶点B.抛物线y=ax2+bx过A.C两点. (1)直接写出点A的坐标.并求出抛物线的解析式, (2)动点P从点A出发.沿线段AB向终点B运动.同时点Q从点C出发.沿线段CD向终点D运动.速度均为每秒1个单位长度.运动时间为t秒.过点P作PE⊥AB交AC于点E ①过点E作EF⊥AD于点F.交抛物线于点G.当t为何值时.线段EG最长?②连接EQ.在点P.Q运动的过程中.判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.
网址:http://m.1010jiajiao.com/timu_id_760284[举报]
| 3 |
| 3 |
(1)求对角线AC所在的直线的函数表达式;
(2)把矩形OABC以AC所在的直线为对称轴翻折,点O落在平面上的点D处,求点D的坐标;
(3)在平面内是否存在点P,使得以A、O、D、P为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
(1)求AO、AB所在直线的函数解析式;
(2)在△AOB内可以作一个正方形CDEF,使它的三个顶点分别落在边AO、AB上,E、F两个顶点落在OB上,请求出这个正方形四个顶眯的坐标,并在图中画出这个正方形;
(3)连接OC,在线段OC上任取一点P,过P作与x轴、y轴的不行线与OA、OB分别交于M、N两点,过M作OB边的垂线与OB交于H;你有什么发现?请写出来,并说明理由. 查看习题详情和答案>>
(2012•烟台)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q
从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?
(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.
查看习题详情和答案>>
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?
(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.