摘要:20.如下图.已知∠1=∠2.∠C=∠D.求证:AC=BD.
网址:http://m.1010jiajiao.com/timu_id_759794[举报]
(本题8分)如图,已知点P是反比例函数图像上一点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交反比例函数
图像于E、F两点.
(1) 用含k1、k2的式子表示以下图形面积:
① 四边形PAOB;② 三角形OFB;③ 四边形PEOF;
(2) 若P点坐标为(-4,3),且PB︰BF=2︰1,分别求出、
的值.
查看习题详情和答案>>
(本题10分)如图,已知在等腰直角三角形
中,
,
平分
,与
相交于点
,延长
到
,使
,
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/1/28941.png)
【小题1】(1)试说明:
;
【小题2】(2)延长
交
于
,且
,)试说明:
;
【小题3】(3)在⑵的条件下,若
是
边的中点,连结
与
相交于点
.
试探索
,
,
之间的数量关系,并说明理由
查看习题详情和答案>>
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/12/28932.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/13/28933.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/14/28934.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/15/28935.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/16/28936.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/17/28937.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/18/28938.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/19/28939.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/0/28940.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/1/28941.png)
【小题1】(1)试说明:
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/2/28942.png)
【小题2】(2)延长
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/3/28943.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/4/28944.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/5/28945.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/6/28946.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/7/28947.png)
【小题3】(3)在⑵的条件下,若
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/8/28948.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/9/28949.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/10/28950.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/11/28951.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/12/28952.png)
试探索
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/13/28953.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/14/28954.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/15/28955.png)