摘要:21.如图.B.C.E点在一条直线上.△ABC.△DCE均为等边三角形.连结AE.DB.(1)猜想AE与BD的大小关系.说明理由,(2)如果把△DCE绕点C旋转一个角度.(1)的结论还成立吗?画图说明.
网址:http://m.1010jiajiao.com/timu_id_740321[举报]
(11·贵港)(本题满分12分).
如图,已知直线y=-x+2与抛物线y=a (x+2) 2相交于A、B两点,点A在y轴上,M为抛物线的顶点.
(1)请直接写出点A的坐标及该抛物线的解析式;
(2)若P为线段AB上一个动点(A、B两端点除外),连接PM, 设线段PM的长为l,点P的横坐标为x,请求出l2与x之间的 函数关系,并直接写出自变量x的取值范围;
(3)在(2)的条件下,线段AB上是否存在点P,使以A、M、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
查看习题详情和答案>>
(11·贵港)(本题满分12分).
如图,已知直线y=-x+2与抛物线y=a (x+2) 2相交于A、B两点,点A在y轴上,M为抛物线的顶点.
(1)请直接写出点A的坐标及该抛物线的解析式;
(2)若P为线段AB上一个动点(A、B两端点除外),连接PM,设线段PM的长为l,点P的横坐标为x,请求出l2与x之间的函数关系,并直接写出自变量x的取值范围;
(3)在(2)的条件下,线段AB上是否存在点P,使以A、M、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由. 查看习题详情和答案>>
如图,已知直线y=-x+2与抛物线y=a (x+2) 2相交于A、B两点,点A在y轴上,M为抛物线的顶点.
(1)请直接写出点A的坐标及该抛物线的解析式;
(2)若P为线段AB上一个动点(A、B两端点除外),连接PM,设线段PM的长为l,点P的横坐标为x,请求出l2与x之间的函数关系,并直接写出自变量x的取值范围;
(3)在(2)的条件下,线段AB上是否存在点P,使以A、M、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由. 查看习题详情和答案>>
(11·贵港)(本题满分12分).
如图,已知直线y=-x+2与抛物线y=a (x+2) 2相交于A、B两点,点A在y轴上,M为抛物线的顶点.
(1)请直接写出点A的坐标及该抛物线的解析式;
(2)若P为线段AB上一个动点(A、B两端点除外),连接PM,设线段PM的长为l,点P的横坐标为x,请求出l2与x之间的函数关系,并直接写出自变量x的取值范围;
(3)在(2)的条件下,线段AB上是否存在点P,使以A、M、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.