摘要:(0.4).动点M从点O出发.沿OA方向以每秒1个单位长度的速度向终点A运动,同时.动点N从点A出发沿AB方向以每秒个单位长度的速度向终点B运动.设运动了x秒.
网址:http://m.1010jiajiao.com/timu_id_734431[举报]
如图,平面上一点P从点M(
,1)出发,沿射线OM方向以每秒1个单位长度的速度作匀速运动,在运动过程中,以OP为对角线的矩形OAPB的边长OA:OB=1:
;过点O且垂直于射线OM的直线l与点P同时出发,且与点P沿相同的方向、以相同的速度运动.
(1)在点P运动过程中,试判断AB与y轴的位置关系,并说明理由.
(2)设点P与直线l都运动了t秒,求此时的矩形OAPB与直线l在运动过程中所扫过的区域的重叠部分的面积S.(用含t的代数式表示) 查看习题详情和答案>>
3 |
3 |
(1)在点P运动过程中,试判断AB与y轴的位置关系,并说明理由.
(2)设点P与直线l都运动了t秒,求此时的矩形OAPB与直线l在运动过程中所扫过的区域的重叠部分的面积S.(用含t的代数式表示) 查看习题详情和答案>>
如图,梯形OABC中,CB∥OA,O为坐标原点,A(4,0),C(0,4),tan∠BAO=2,动点P从点C出发,以每秒1个单位的速度沿线段CB运动到点B后,再以每秒
个单位的速度沿线段BA运动,到点A停止,过点P作PQ⊥x轴于Q,以PQ为一边向左作正方形PQRS,设运动时间为t(秒),正方形PQRS与梯形ABCD重叠的面积为S(平方单位).
(1)求点B的坐标.
(2)求S与t的函数关系式.
(3)求(2)中的S的最大值.
(4)连接OB,OB中点为M,正方形PQRS在变化过程中,使点M在正方形PQRS的边上的t值为
查看习题详情和答案>>
5 |
(1)求点B的坐标.
(2)求S与t的函数关系式.
(3)求(2)中的S的最大值.
(4)连接OB,OB中点为M,正方形PQRS在变化过程中,使点M在正方形PQRS的边上的t值为
1秒或3秒
1秒或3秒
.
如图所示,已知A点从(1,0)点出发,以每秒1个单位长的速度沿着x轴的正方向运动,经过t秒后,以O、A为顶点作菱形OABC,使B、C点都在第一象限内,且∠AOC=60°,又以P(0,4)为圆心,PC为半径的圆恰好与OA所在的直线相切,则t= .
查看习题详情和答案>>
查看习题详情和答案>>