网址:http://m.1010jiajiao.com/timu_id_72463[举报]
本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.
若实数、、满足,则称比接近.
(1)若比3接近0,求的取值范围;
(2)对任意两个不相等的正数、,证明:比接近;
(3)已知函数的定义域.任取,等于和中接近0的那个值.写出函数的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).
查看习题详情和答案>>
已知点(),过点作抛物线的切线,切点分别为、(其中).
(Ⅰ)若,求与的值;
(Ⅱ)在(Ⅰ)的条件下,若以点为圆心的圆与直线相切,求圆的方程;
(Ⅲ)若直线的方程是,且以点为圆心的圆与直线相切,
求圆面积的最小值.
【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。
中∵直线与曲线相切,且过点,∴,利用求根公式得到结论先求直线的方程,再利用点P到直线的距离为半径,从而得到圆的方程。
(3)∵直线的方程是,,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,借助于函数的性质圆面积的最小值
(Ⅰ)由可得,. ------1分
∵直线与曲线相切,且过点,∴,即,
∴,或, --------------------3分
同理可得:,或----------------4分
∵,∴,. -----------------5分
(Ⅱ)由(Ⅰ)知,,,则的斜率,
∴直线的方程为:,又,
∴,即. -----------------7分
∵点到直线的距离即为圆的半径,即,--------------8分
故圆的面积为. --------------------9分
(Ⅲ)∵直线的方程是,,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即, ………10分
∴
,
当且仅当,即,时取等号.
故圆面积的最小值.
查看习题详情和答案>>