网址:http://m.1010jiajiao.com/timu_id_70359[举报]
一、选择题(12’×5=60’)
1.C
2.理D 文D
3.D
4.C. 提示:{f(n)}是等差数列(n∈N*)
5.A. 提示:当S1=S2=S3=S4=S时,λ=4;当高趋向于零时,λ无限接近2
6.A
7.A
8.D
9.B. 提示:∵|PF1|+|PF2|=2,|PF1|-|PF2|=±2,又m-1=n+1,
∴|PF1|2+|PF2|2=2(m+n)=4(m-1)=|F1F2|2
10.C
11.D
12.D. 提示:第一行C22,第二行C31+C32=C42,第三行C41+C42=C52,…,故S19=C22+C42+C52+…+C122=C133-C32=283.
二、填空题(4’×4=16’)
13.y=-
14.答案:相反数的相反数是它本身,集合A的补集的补集是它本身,一个复数的共轭的共轭是它本身,等等.
15.nn
16.4或6或7或8
三、解答题
17.解:(1) y=sin2ωx+ cos2ωx+ = sin(2ωx+ )+ (4)
∵ T= ∴ ω =2 (6)
(2) y=sin(4x+ )+
∵ 0≤x≤ ∴ ≤4x+ ≤π + (8)
∴ 当x= 时,y=0 当x=时,y= (12)
18.(1)质点n次移动看作n次独立重复试验,记向左移动一次为事件A,
则P(A)=,P()=3秒后,质点A在点x=1处的概率P1=P3(1)=C31?p(1-p)2=3××()2= (6’)
(2)2秒后,质点A、B同在x=2处,即A、B两质点各做二次移动,其中质点A向右移动2次,质点B向左、向右各移动一次,故P2=P2(0)?P2(1)=C20?()2?C21??= (12’)
考点解析:本题考查n次独立重复试验及独立事件同时发生的概率,但需要一定的分析、转化能力.
19.(1)∵AA1⊥面ABCD,∴AA1⊥BD,
又BD⊥AD,∴BD⊥A1D (2’)
又A1D⊥BE,
∴A1D⊥平面BDE (3’)
(2)连B1C,则B1C⊥BE,易证RtΔCBE∽RtΔCBB1,
∴=,又E为CC1中点,∴BB12=BC2=a2,
∴BB1=a (5’)
取CD中点M,连BM,则BM⊥平面CD1,作MN⊥DE于N,连NB,则∠BNM是二面角B?DE?C的平面角 (7’)
RtΔCED中,易求得MN=,RtΔBMN中,tan∠BNM==,∴∠BNM=arctan (10’)
(3)易证BN长就是点B到平面A1DE的距离 (11’)
BN==a (12’)
(2)另解:以D为坐标原点,DA为x轴、DB为y轴、DD1为z轴建立空间直角坐标系
则B(0,a,0),设A1(a,0,x),E(-a,a,),=(-a,0,-x),=(-a,0,),∵A1D⊥BE
∴a2-x2=0,x2=2a2,x=a,即BB1=a.
考点解析:九(A)、九(B)合用一道立体几何题是近年立几出题的趋势,相比较而言,选用九(B)体系可以避开一些逻辑论证,取之以代数运算,可以减轻多数学生学习立体几何的学习压力.
20.若按方案1付款,设每次付款为a(万元)
则有a+a(1+0.8%)4+a(1+-0.8%)8=10×(1+0.8%)12 (4’)
即a×=10×1.00812,a=
付款总数S1=3a=9.9×1.00812 (6’)
若按方案2付款,设每次付款额为b(万元),同理可得:b= (8’)
付款总额为S2=12b=9.6×1.00812,故按有二种方案付款总额较少. (12’)
考点解析:复习中要注意以教材中研究性学习内容为背景的应用问题.
21.(理)(1)设M(x,y),C(1,y0),∵=,∴= (2’)
又A、M、C三点一线,∴= ② (4’)
由(1)、(2)消去y0,得x2+4y2=1(y≠0) (6’)
(2)P(0,)是轨迹M短轴端点,∴t≥0时∠PQB或∠PBQ不为锐角,∴t<0
又∠QPB为锐角,∴?>0,∴(t,- )(1,- )=t+ >0,∴- <t<0 (12’)
考点解析:解析几何题注意隐藏的三点共线关系;平面向量运算也常常设置在解析几何考题当中.
21.(文)证明:(1) 设-1<x1<x2<+∞
f(x1)-f(x2) =a-a + -
=a-a + (4)
∵ -1<x1<x2 ,a>0
∴ a-a<0 <0
∴ f(x1)-f(x2)<0 即 f(x1)<f(x2) ,函数f(x)在(-1,+∞ )上为增函数. (6)
(2) 若方程有负根x0 (x0≠-1),则有a= -1
若 x0<-1 , -1<-1 而 a>0 故 a ≠ -1 (10)
若 -1<x0<0 , -1>2 而 a<a0=1 a ≠ -1
综上所述,方程f(x)=0没有负根.
(12)
22.(理)(1)Sn=an,∴Sn+1=an+1,an+1=Sn+1-Sn=an+1-an,∴= (n≥2) (2’)
∴==…==1,∴an+1=n,an=n-1 (n≥2),又a1=0,∴an=n-1 (4’)
(2)bn+1=(1+ )n+1,bn=(1+ )n,
∵<(n+1)?(1+ )n (7’)
整理即得:(1+ )n<(1+ )n+1,即bn<bn+1 (8’)
(3)由(2)知bn>bn-1>…>b1= (10’)
又Cnr?()r=(??…)?()r≤()r,(0≤r≤n),
∴bn≤1+ +()2+…+()n=2-()n<2,∴≤bn<2 (14’)
考点解析:这种“新概念”题需要较好的理解、分析能力,放缩法证明不等式是不等式证明的常用方法,也具有一定的灵活性,平时要注重概念的学习,常见题型的积累,提高思维能力和联想变通能力.
22.(文)见21(理).
本资料由《七彩教育网》www.7caiedu.cn 提供!
某汽车销售公司为促销采取了较灵活的付款方式,对购买10万元一辆的轿车在一年内将款全部付清的前提下,可以选择以下两种分期付款方案购车:
方案1:分3次付清,购买后4个月第一次付款,再过4个月第二次付款,再过4个月第三次付款.方案2:分12次付清,购买后1个月第一次付款,再过1个月第二次付款,……购买后12个月第十二次付款.
方案2:现规定分期付款中,每期付款额相同,月利率为0.8%,每月利息按复利计息,试比较以上两种方案的哪一种方案付款总数较少?(参考数据:1.0083=1.024,1.0084=1.033,1.00811=1.092,1.00812=1.1)
查看习题详情和答案>>
某汽车销售公司为促销采取了较灵活的付款方式,对购买10万元一辆的轿车在一年
内将款全部付清的前提下,可以选择以下两种分期付款方案购车:
方案1:分3次付清,购买后4个月第一次付款,再过4个月第二次付款,再过4个月第三次付款.
方案2:分12次付清,购买后1个月第一次付款,再过1个月第二次付款,……购买后12个月第十二次付款.现规定分期付款中,每期付款额相同,月利率为0.8%,每月利息按复利计息,试比较以上两种方案的哪一种方案付款总数较少?(参考数据:1.0083=1.024,1.0084=1.033,1.00811=1.092,1.00812=1.1)
查看习题详情和答案>>
某汽车销售公司为促销采取了较灵活的付款方式,对购买10万元一辆的轿车在一年
内将款全部付清的前提下,可以选择以下两种分期付款方案购车:
方案1:分3次付清,购买后4个月第一次付款,再过4个月第二次付款,再过4个月第三次付款.方案2:分12次付清,购买后1个月第一次付款,再过1个月第二次付款,……购买后12个月第十二次付款.
现规定分期付款中,每期付款额相同,月利率为0.8%,每月利息按复利计息,试比较以上两种方案的哪一种方案付款总数较少?(参考数据:1.0083=1.024,1.0084=1.033,1.00811=1.092,1.00812=1.1)
查看习题详情和答案>>
方案一:分3次付清,购买后4个月第1次付款,再过4个月第2次付款,再过4个月第3次付款.
方案二:分12次付清,购买后1个月第1次付款,再过1个月第2次付款,…,购买后12个月第12次付款.
规定分期付款中每期付款额相同,月利率为0.8%,每月利息按复利计算,即指上月利息要计入下月的本金.
(1)试比较以上两种方案的哪一种方案付款总额较少?
(2)若汽车销售公司将收回的售车款进行再投资,可获月增长2%的收益,为此对一次性付款给予降价p%的优惠,为保证一次性付款经一年后的本金低于方案一和方案二中较少一种的付款总额,且售车款再投资一年后的本金要高于车价款一年的本金,试确定p的取值范围.
(注:计算结果保留三位有效数字,参考数据:1.0083≈1.024,1.0084≈1.033,1.00811≈1.092,1.00812≈1.1,1.0211≈1.243,1.0212≈1.268)
查看习题详情和答案>>