摘要:当时. 所以=4
网址:http://m.1010jiajiao.com/timu_id_68725[举报]
如图,某市准备在道路EF的一侧修建一条运动比赛道,赛道的前一部分为曲线段FBC,该曲线段是函数y=Asin(ωx+
)(A>0,ω>0),x∈[-4,0]时的图象,且图象的最高点为B(-1,2).赛道的中间部分为长
千米的直线跑道CD,且CD∥EF.赛道的后一部分是以O为圆心的一段圆弧
.
(1)求ω的值和∠DOE的大小;
(2)若要在圆弧赛道所对应的扇形ODE区域内建一个“矩形草坪”,矩形的一边在道路EF上,一个顶点在半径OD上,另外一个顶点P在圆弧
上,且∠POE=θ,求当“矩形草坪”的面积取最大值时θ的值.
查看习题详情和答案>>
2π |
3 |
3 |
DE |
(1)求ω的值和∠DOE的大小;
(2)若要在圆弧赛道所对应的扇形ODE区域内建一个“矩形草坪”,矩形的一边在道路EF上,一个顶点在半径OD上,另外一个顶点P在圆弧
DE |
如图所示,直角坐标系xOy建立在湖泊的某一恰当位置,现准备在湖泊的一侧修建一条观光大道,它的前一段MD是以O为圆心,OD为半径的圆弧,后一段DBC是函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<
),x∈[4,8]时的图象,图象的最高点为B(5,
)
(Ⅰ)求函数y=sin(ωx+φ)的解析式;
(Ⅱ)若在湖泊内修建如图所示的矩形水上乐园OEPF,其中折线FPE为水上赛艇线路,问点P落在圆弧MD上何处时赛艇线路最长? 查看习题详情和答案>>
π |
2 |
8 |
3 |
(Ⅰ)求函数y=sin(ωx+φ)的解析式;
(Ⅱ)若在湖泊内修建如图所示的矩形水上乐园OEPF,其中折线FPE为水上赛艇线路,问点P落在圆弧MD上何处时赛艇线路最长? 查看习题详情和答案>>
如图,某市准备在道路EF的一侧修建一条运动比赛道,赛道的前一部分为曲线段FBC,该曲线段是函数y=Asin(ωx+)(A>0,ω>0),x∈[-4,0]时的图象,且图象的最高点为B(-1,2)。赛道的中间部分为长千米的直线跑道CD,且CD∥EF。赛道的后一部分是以O为圆心的一段圆弧,
(1)求ω的值和∠DOE的大小;
(2)若要在圆弧赛道所对应的扇形ODE区域内建一个“矩形草坪”,矩形的一边在道路EF上,一个顶点在半径OD上,另外一个顶点P在圆弧上,且∠POE=θ,求当“矩形草坪”的面积取最大值时θ的值。
(1)求ω的值和∠DOE的大小;
(2)若要在圆弧赛道所对应的扇形ODE区域内建一个“矩形草坪”,矩形的一边在道路EF上,一个顶点在半径OD上,另外一个顶点P在圆弧上,且∠POE=θ,求当“矩形草坪”的面积取最大值时θ的值。