摘要:解: (3)试求出一个倍角三角形的三条边的长.使这三条边长恰为三个连续的正整数. 解:
网址:http://m.1010jiajiao.com/timu_id_676562[举报]
(1)若∠A=2∠B,且∠A=60°,求证:a2=b(b+c).
(2)如果对于任意的倍角三角形ABC(如图),其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?请证明你的结论;
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.
在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).

(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.

(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数. 查看习题详情和答案>>
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).
(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数. 查看习题详情和答案>>
在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).

(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.

(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.
查看习题详情和答案>>
(1)如图,在△ABC中,∠A=2∠B,且∠A=60度.求证:a2=b(b+c).
(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.
(3)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数.
查看习题详情和答案>>