摘要:17.如图(4).AD∥BC.AB平分∠DAC.若∠B=40°.则∠C等于 度.
网址:http://m.1010jiajiao.com/timu_id_667941[举报]
我们知道:将一条线段AB分割成大小两条线段AC、CB,若小线段CB与大线段AC的长度之比等于大线段AC与线段AB的长度之比,即
=
=
=0.61803398874989.这种分割称为黄金分割,点C叫做线段AB的黄金分割点.类似地我们可以定义,顶角为36°的等腰三角形叫黄金三角形,其底与腰之比为黄金数,底角平分线与腰的交点为腰的黄金分割点.
(1)如图1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分线CD交腰AB于点D,请你说明D为腰AB的黄金分割点的理由.
(2)若腰和上底相等,对角线和下底相等的等腰梯形叫作黄金梯形,其对角线的交点为对角线的黄金分割点.如图2,AD‖BC,AB=AD=DC,AC=BD=BC,试说明O为AC的黄金分割点.
(3)如图3,在Rt△ABC中,∠ACB=90°,CD为斜边AB上的高,∠A、∠B、∠ACB的对边分别为a、b、c.若D是AB的黄金分割点,那么a、b、c之间的数量关系是什么并证明你的结论.
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201112/72/ed4afcff.png)
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201112/72/01db3cfe.png)
查看习题详情和答案>>
CB |
AC |
AC |
AB |
| ||
2 |
(1)如图1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分线CD交腰AB于点D,请你说明D为腰AB的黄金分割点的理由.
(2)若腰和上底相等,对角线和下底相等的等腰梯形叫作黄金梯形,其对角线的交点为对角线的黄金分割点.如图2,AD‖BC,AB=AD=DC,AC=BD=BC,试说明O为AC的黄金分割点.
(3)如图3,在Rt△ABC中,∠ACB=90°,CD为斜边AB上的高,∠A、∠B、∠ACB的对边分别为a、b、c.若D是AB的黄金分割点,那么a、b、c之间的数量关系是什么并证明你的结论.
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201112/72/ed4afcff.png)
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201112/72/01db3cfe.png)
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201112/72/bfd77fa6.png)
如图1,AD∥BC,AB ⊥BC于B,∠DCB=75°,以CD为边的等边△DCE的另一顶点E在线段AB上.
(1)填空:∠ADE=____°;
(2)求证: AB=BC;
(3)如图2所示,若F为线段CD上一点,∠FBC=30°,求的值.
如图1,AD∥BC,AB ⊥BC于B,∠DCB=75°,以CD为边的等边△DCE的另一顶点E在线段AB上.
(1)填空:∠ADE=____°;
(2)求证: AB=BC;
(3)如图2所示,若F为线段CD上一点,∠FBC=30°,求的值.
查看习题详情和答案>>