摘要:12.如图(3).把△ABC的纸片沿DE折叠.使顶点A落在四边形BCDE的内部.则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律.你现的规律是
网址:http://m.1010jiajiao.com/timu_id_667935[举报]
(1)如图(1),把三角形纸片ABC的角A沿DE折起(DE为折痕),使顶点A在∠A的内部,点A的对称点为点O,判断∠O、∠ODC、∠BEO的大小关系,并写出证明过程.
(2)如图(2),把三角形纸片ABC的角A沿DE折起(DE为折痕),使顶点A在∠A的外部,点A的对称点为点O,判断∠O、∠ODC、∠BEO的大小关系吗?(只写出答案,无需证明).
(3)在图(1)的基础上再以FG为折痕叠纸片,形成如图(3)的形状.判断∠1、∠2、∠3、∠4、∠5、∠6、∠7的之间大小关系吗?(只写出答案,无需证明).
查看习题详情和答案>>
(2)如图(2),把三角形纸片ABC的角A沿DE折起(DE为折痕),使顶点A在∠A的外部,点A的对称点为点O,判断∠O、∠ODC、∠BEO的大小关系吗?(只写出答案,无需证明).
(3)在图(1)的基础上再以FG为折痕叠纸片,形成如图(3)的形状.判断∠1、∠2、∠3、∠4、∠5、∠6、∠7的之间大小关系吗?(只写出答案,无需证明).
同学们,在学习了轴对称变换后我们经常会遇到三角形中的“折叠”问题.我们通常会考虑到折叠前与折叠后的图形全等,并利用全等的性质,即对应角相等,对应边相等来研究解决数学中的“折叠”问题.
(1)如图①,把△ABC纸片沿DE折叠,当点A落在△ABC内部时,我们不仅可以发现AE=A′E,AD= ,而且我们还可以通过发现∠AED=∠A′ED,∠ADE=∠ ,∠A=∠A′,从而求得∠1+∠2=2∠A.
(2)如图②,当点A落在△ABC外部时,我们发现∠2=∠DFA+∠ ,∠DFA=∠1+∠ ,那么(1)中的∠1+∠2=2∠A在这里还成立吗?如成立,请说明理由.如不成立,请写出成立的式子并说明理由.
(3)已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D处,折痕交另一直角边于E,交斜边于F,请你模仿图①,图②,画出相应的示意图并求出△CDE的周长. 查看习题详情和答案>>
(1)如图①,把△ABC纸片沿DE折叠,当点A落在△ABC内部时,我们不仅可以发现AE=A′E,AD=
(2)如图②,当点A落在△ABC外部时,我们发现∠2=∠DFA+∠
(3)已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D处,折痕交另一直角边于E,交斜边于F,请你模仿图①,图②,画出相应的示意图并求出△CDE的周长. 查看习题详情和答案>>