摘要:(A)等于 (B)等于90° (C)大于90° (D)小于90°
网址:http://m.1010jiajiao.com/timu_id_666237[举报]
(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b=(
)2+(
)2=(
)2+(
)2-2
+2
=(
-
)2+2
,
又∵(
-
)2≥0,∴(
-
)2+2
≥0+2
,即a+b≥2
.
根据上述内容,回答下列问题:在a+b≥2
(a、b均为正实数)中,若ab为定值p,则a+b≥2
,当且仅当a、b满足 时,a+b有最小值2
.
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥2
成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数y=
的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.
查看习题详情和答案>>
对于任意正实数a、b,可作如下变形a+b=(
a |
b |
a |
b |
ab |
ab |
a |
b |
ab |
又∵(
a |
b |
a |
b |
ab |
ab |
ab |
根据上述内容,回答下列问题:在a+b≥2
ab |
p |
p |
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥2
ab |
(3)探索应用:如图2,已知A为反比例函数y=
4 |
x |
查看习题详情和答案>>
(2013•大兴区二模)已知:如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AB=
,AD=3,BC=4,以点D为旋转中心,将腰DC逆时针旋转α至DE.
(1)当α=90°时,连结AE,则△EAD的面积等于
(直接写出结果);
(2)当0°<α<180°时,连结BE,请问BE能否取得最大值?若能,请求出BE的最大值;若不能,请说明理由;
(3)当0°<α<180°时,连结CE,请问α为多少度时,△CDE的面积是
.
查看习题详情和答案>>
3 |
(1)当α=90°时,连结AE,则△EAD的面积等于
3 |
2 |
3 |
2 |
(2)当0°<α<180°时,连结BE,请问BE能否取得最大值?若能,请求出BE的最大值;若不能,请说明理由;
(3)当0°<α<180°时,连结CE,请问α为多少度时,△CDE的面积是
3 |
(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b==-+=+,
又∵≥0,∴+≥0+,即a+b≥.
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值.
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.
查看习题详情和答案>>
对于任意正实数a、b,可作如下变形a+b==-+=+,
又∵≥0,∴+≥0+,即a+b≥.
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值.
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.
查看习题详情和答案>>
(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b==-+=+,
又∵≥0,∴+≥0+,即a+b≥.
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值.
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.
查看习题详情和答案>>
对于任意正实数a、b,可作如下变形a+b==-+=+,
又∵≥0,∴+≥0+,即a+b≥.
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值.
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.
查看习题详情和答案>>
(1)阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b==-+=+,
又∵≥0,∴+≥0+,即a+b≥.
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值.
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.
查看习题详情和答案>>
对于任意正实数a、b,可作如下变形a+b==-+=+,
又∵≥0,∴+≥0+,即a+b≥.
根据上述内容,回答下列问题:在a+b≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足______时,a+b有最小值.
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.
查看习题详情和答案>>