网址:http://m.1010jiajiao.com/timu_id_61493[举报]
一、 填空题(48分)
1、4 2、(理)20(文) 3、 4、 5、 6、7、(理)(文)4 8、6 9、 10、 11、如 12、
二、 选择题(16分)
13、B 14、B 15、C 16、A
三、 解答题(86分)
17、(12分)(1),则……………………… (6分)
(2)………………………………………(9分)
…………………………………………………………(12分)
18、(12分)(1)它是有一条侧棱垂直于底面的四棱锥
…………………………………………………………(6分)
(注:评分注意实线、虚线;垂直关系;长度比例等)
(2)由题意,,则,
,
∴需要3个这样的几何体可以拼成一个棱长为6的正方体…(12分)
19、(14分)
(1)抛物线的焦点为(1,0) ……………………………………………………(2分)
设椭圆方程为,则
∴椭圆方程为……………………………………………(6分)
(2)设,则
………………(8分)
① 当时,,即时,;
② 当时,,即时,;
综上,。……………………………………(14分)
(注:也可设解答,参照以上解答相应评分)
20、(14分)
(1)设当天的旅游收入为L,由得
……………………………(2分)
由,知…………………………………………(4分)
,得。
即当天的旅游收入是20万到60万。……………………………………………(7分)
(2)则每天的旅游收入上缴税收后不低于220000元
由 ()得;
由 ()得;
∴………………………………………………………………………(11分)
代入可得 ∴
即每天游客应不少于1540人。……………………………………………………(14分)
21、(16分)
(1) 由,得则故(4分)
(2) 由,得即
∴,所以是不唯一的。……………………………………(10分)
(3),,;
∴…………………………………………(12分)
(文)………………………………………………………………………………(16分)
(理)一般地,对任意复数,有。
证明:设,
,
∴。…………………………………………………(16分)
22、(18分)
(1) ………………………………………………………………(6分)
(2)由解得
即
解得…………………………………(12分)
(3) 由,
又,
当时,,,
∴对于时,,命题成立。………………(14分)
以下用数学归纳法证明对,且时,都有成立
假设时命题成立,即,
那么即时,命题也成立。
∴存在满足条件的区间。………………………………(18分)
满足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值; (Ⅱ)求证:
n4 |
a2 |
p4 |
b2 |
q4 |
c2 |
(2)已知在直角坐标系xOy中,曲线C的参数方程为
|
π |
4 |
2 |
(Ⅰ)求曲线C的普通方程并说明曲线的形状;
(Ⅱ)是否存在实数t,使得直线l与曲线C有两个不同的公共点A、B,且
OA |
OB |
MA |
MB |
(2)若(1)中的轨迹按向量(1,-1)平移后恰与x+ky-3=0相切,求k.
(3)如图,l过
x2 |
a2 |
y2 |
b2 |
c |
b |
x2 |
a2 |
y2 |
b2 |
(1)已知曲线C1的方程为,伸缩比λ=2,求C1关于原点“伸缩变换”后所得曲线C2的方程;
(2)射线l的方程,如果椭圆C1:经“伸缩变换”后得到椭圆C2,若射线l与椭圆C1、C2分别交于两点A、B,且,求椭圆C2的方程;
(3)对抛物线C1:y2=2p1x,作变换(x,y)→(λ1x,λ1y),得抛物线C2:y2=2p2x;对C2作变换(x,y)→(λ2x,λ2y)得抛物线C3:y2=2p3x,如此进行下去,对抛物线Cn:y2=2pnx作变换(x,y)→(λnx,λny),得抛物线Cn+1:y2=2pn+1x,….若,求数列{pn}的通项公式pn.
查看习题详情和答案>>