网址:http://m.1010jiajiao.com/timu_id_58983[举报]
1-15CBDAC CDB 0 5 100 [3.9] 垂直 2或8
16.⑴ ∵ ,……………………………… 2分
又∵ ,∴ 而为斜三角形,
∵,∴. ……………………………………………………………… 4分
∵,∴ . …………………………………………………… 6分
⑵∵,∴ …10分
即,∵,∴.…………………………………12分
17.(Ⅰ)从4名运动员中任取两名,其靶位号与参赛号相同,有种方法,另2名运动员靶位号与参赛号均不相同的方法有1种,所以恰有一名运动员所抽靶位号与参赛号相同的概率为 ……………………………4分
(Ⅱ)①由表可知,两人各射击一次,都未击中9环的概率为P=(1-0.3)(1-0.32)=0.476至少有一人命中9环的概率为p=1-0.476=0.524………………………8分
②
所以2号射箭运动员的射箭水平高…………………………………12分
18.证明:(Ⅰ)在梯形ABCD中,∵,
∴四边形ABCD是等腰梯形,
且
∴,∴
又∵平面平面ABCD,交线为AC,∴平面ACFE…………………6分
(Ⅱ)取EF中点G,EB中点H,连结DG、GH、DH,∵DE=DF,∴ ∵平面ACFE,∴ 又∵,∴又∵,∴
∴是二面角B―EF―D的平面角.
在△BDE中∴
∴,∴又∴在△DGH中,
由余弦定理得即二面角B―EF―D的大小余弦值...14分
19.解:(1)由椭圆定义可得,可得
而,,解得 (4分)
(或解:以为直径的圆必与椭圆有交点,即
(2)由,得
解得
此时
当且仅当m=2时, (9分)
(3)由
设A,B两点的坐标分别为,中点Q的坐标为
则,两式相减得
①
且在椭圆内的部分
又由可知
②
①②两式联立可求得点Q的坐标为
点Q必在椭圆内
又 (14分)
20.解:(1)
故……………………………4分
(2)
故
由此猜测
下面证明:当时,由
得
若
当
当时,
当时,
总之故在(- (10分)
又
所以当时,在(-1,0)上有唯一实数解,从而在
上有唯一实数解。
综上可知,. (14分)
21.解:(1)令
令
由①②得 (6分)
(2)由(1)可得
则
又
n
又
………………14分
十 六 进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
十进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | `11 | 12 | 13 | 14 | 15 |
例如,用十六进制表示:E+D=1B,则A×B等于( )
A.6E B.72 C.5F D.B0
查看习题详情和答案>>电话同时打入数ξ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
概率P | 0.13 | 0.35 | 0.27 | 0.14 | 0.08 | 0.02 | 0.01 | 0 | 0 | 0 | 0 |
①求至少一路电话不能一次接通的概率;
②在一周五个工作日中,如果有三个工作日的这一时间内至少一路电话不能一次接通,那么公司的形象将受到损害,现用至少一路电话一次不能接通的概率表示公司形象的“损害度”,求这种情况下公司形象的“损害度”;(2)求一周五个工作日的这一时间内,同时打入的电话数ξ的期望值.