摘要:19.(1)种, (2)设取到红球x个.白球y个.依题意知.
网址:http://m.1010jiajiao.com/timu_id_58637[举报]
已知数列{an}的前n项和为Sn,且对于任意的n∈N*,恒又Sn=2an-n,
(1)求证数列{an+1}是等比数列;
(2)设cn=
,试判断数列{cn}的单调性,并求数列{cn}的最大项.
查看习题详情和答案>>
(1)求证数列{an+1}是等比数列;
(2)设cn=
2n | an•an+1 |
盒内含有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球,规定取出1个红色球得1分,取出一个白球得0分,取出一个黑球得-1分,现从盒内一次性取3个球.
(1)求取出的三个球得分之和恰为1分的概率
(2)设 ξ为取出的3个球中白色球的个数,求ξ分布列和数学期望.
查看习题详情和答案>>
(1)求取出的三个球得分之和恰为1分的概率
(2)设 ξ为取出的3个球中白色球的个数,求ξ分布列和数学期望.
设P是曲线C1上的任一点,Q是曲线C2上的任一点,称|PQ|的最小值为曲线C1与曲线C2的距离.
(1)求曲线C1:y=ex与直线C2:y=x-1的距离;
(2)设曲线C1:y=ex与直线C3:y=x-m(m∈R,m≥0)的距离为d1,直线C2:y=x-1与直线C3:y=x-m的距离为d2,求d1+d2的最小值.
查看习题详情和答案>>
(1)求曲线C1:y=ex与直线C2:y=x-1的距离;
(2)设曲线C1:y=ex与直线C3:y=x-m(m∈R,m≥0)的距离为d1,直线C2:y=x-1与直线C3:y=x-m的距离为d2,求d1+d2的最小值.
(2012•湛江二模)已知抛物线y2=mx(m>0,m为常数)的焦点是F(1,0),P(x0,y0)是抛物线上的动点,定点A(2,0).
(1)若x0>2,设线段AP的垂直平分线与x轴交于Q(x1,O),求x1的取值范围;
(2)是否存在垂直于x轴的定直线l,使以AP为直径的圆截l得到的弦长为定值?若存在,求其方程,若不存在,说明理由.
查看习题详情和答案>>
(1)若x0>2,设线段AP的垂直平分线与x轴交于Q(x1,O),求x1的取值范围;
(2)是否存在垂直于x轴的定直线l,使以AP为直径的圆截l得到的弦长为定值?若存在,求其方程,若不存在,说明理由.
(2005•静安区一模)已知等差数列{an}的首项为p,公差为d(d>0).对于不同的自然数n,直线x=an与x轴和指数函数f(x)=(
)x的图象分别交于点An与Bn(如图所示),记Bn的坐标为(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面积分别为s1和s2,一般地记直角梯形AnAn+1Bn+1Bn的面积为sn.
(1)求证数列{sn}是公比绝对值小于1的等比数列;
(2)设{an}的公差d=1,是否存在这样的正整数n,构成以bn,bn+1,bn+2为边长的三角形?并请说明理由;
(3)(理)设{an}的公差d(d>0)为已知常数,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?并请说明理由.
(4)(文)设{an}的公差d=1,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?如果存在,给出一个符合条件的p值;如果不存在,请说明理由.
查看习题详情和答案>>
1 | 2 |
(1)求证数列{sn}是公比绝对值小于1的等比数列;
(2)设{an}的公差d=1,是否存在这样的正整数n,构成以bn,bn+1,bn+2为边长的三角形?并请说明理由;
(3)(理)设{an}的公差d(d>0)为已知常数,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?并请说明理由.
(4)(文)设{an}的公差d=1,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?如果存在,给出一个符合条件的p值;如果不存在,请说明理由.