摘要:如何建立极坐标系比较方便?(以焦点为极点.以焦点所在的直线为极轴.建立极坐标系)
网址:http://m.1010jiajiao.com/timu_id_569675[举报]
(2013•泉州模拟)在平面直角坐标系xOy中,直线l的参数方程为:
(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2
sin(θ+
).
(Ⅰ)求曲线C的平面直角坐标方程;
(Ⅱ)设直线l与曲线C交于点M,N,若点P的坐标为(1,0),求|PM|•|PN|的值.
查看习题详情和答案>>
|
2 |
π |
4 |
(Ⅰ)求曲线C的平面直角坐标方程;
(Ⅱ)设直线l与曲线C交于点M,N,若点P的坐标为(1,0),求|PM|•|PN|的值.
本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵M=
,向量
=
.
(I)求矩阵M的特征值λ1、λ2和特征向量
1和
;
(II)求M6
的值.
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
(α为参数).以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ-
)=2
.
(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)点P为曲线C上的动点,求点P到直线l距离的最大值.
(3)选修4-5:不等式选讲
(Ⅰ)已知:a、b、c∈R+,求证:a2+b2+c2≥
(a+b+c)2;
(Ⅱ)某长方体从一个顶点出发的三条棱长之和等于3,求其对角线长的最小值.
查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知矩阵M=
|
ξ |
|
(I)求矩阵M的特征值λ1、λ2和特征向量
ξ |
ξ2 |
(II)求M6
ξ |
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
|
π |
4 |
2 |
(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)点P为曲线C上的动点,求点P到直线l距离的最大值.
(3)选修4-5:不等式选讲
(Ⅰ)已知:a、b、c∈R+,求证:a2+b2+c2≥
1 |
3 |
(Ⅱ)某长方体从一个顶点出发的三条棱长之和等于3,求其对角线长的最小值.
(2013•盐城二模)(选修4-4:坐标系与参数方程)
已知圆C的参数方程为
(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+ρcosθ=1,求直线l截圆C所得的弦长.
查看习题详情和答案>>
已知圆C的参数方程为
|