摘要:过点(x0,y0)的任意直线与椭圆有公共点.则(x0,y0)应该满足关系式
网址:http://m.1010jiajiao.com/timu_id_567628[举报]
椭圆
+
=1(a>b>0)的一个焦点是F(1,0),已知椭圆短轴的两个三等分点与一个焦点构成正三角形.
(1)求椭圆的标准方程;
(2)已知Q(x0,y0)为椭圆上任意一点,求以Q为切点,椭圆的切线方程.
(3)设点P为直线x=4上一动点,过P作椭圆两条切线PA,PB,求证直线AB过定点,并求出该定点的坐标. 查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
(1)求椭圆的标准方程;
(2)已知Q(x0,y0)为椭圆上任意一点,求以Q为切点,椭圆的切线方程.
(3)设点P为直线x=4上一动点,过P作椭圆两条切线PA,PB,求证直线AB过定点,并求出该定点的坐标. 查看习题详情和答案>>
已知椭C:+=1(a>b>0)的焦点为F1,F2,P是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,且△PF1F2的周长为4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线的l是圆O:x2+y2=上动点P(x0,y0)(x0-y0≠0)处的切线,l与椭圆C交于不同的两点Q,R,证明:∠QOR的大小为定值.
查看习题详情和答案>>
已知C1:
+
=1(a>b>0)的离心率为
,直线l:x-y=0与以原点为圆心,以椭圆C1的短半轴长为半径的圆相切,曲线C2以x轴为对称轴.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点F2,直线l1过点F1且垂直于椭圆的长轴,曲线C2上任意一点M到l1距离与MF2相等,求曲线C2的方程.
(3)若A(x1,2),C(x0,y0),是C2上不同的点,且AB⊥BC,求y0的取值范围. 查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
| ||
3 |
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点F2,直线l1过点F1且垂直于椭圆的长轴,曲线C2上任意一点M到l1距离与MF2相等,求曲线C2的方程.
(3)若A(x1,2),C(x0,y0),是C2上不同的点,且AB⊥BC,求y0的取值范围. 查看习题详情和答案>>