摘要:由 ①.②可知.当时...
网址:http://m.1010jiajiao.com/timu_id_567144[举报]
已知m>1,直线,椭圆C:
,
、
分别为椭圆C的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B
的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[
【解析】第一问中因为直线经过点
(
,0),所以
=
,得
.又因为m>1,所以
,故直线的方程为
第二问中设,由
,消去x,得
,
则由,知
<8,且有
由题意知O为的中点.由
可知
从而
,设M是GH的中点,则M(
).
由题意可知,2|MO|<|GH|,得到范围
查看习题详情和答案>>
甲、乙 两地相距100km,汽车从甲地匀速行驶到乙地,速度不超过60km/h,已知汽车每小时的运输成本(元)由可变部分和固定部分组成,可变部分与速度x(km/h)的平方成正比例,比例系数为
,固定部分为60元.
(Ⅰ)将全程的运输成本y(元)表示为速度x(km/h)的函数,并指出函数的定义域;
(Ⅱ)判断此函数的单调性,并求当速度为多少时,全程的运输成本最小.
查看习题详情和答案>>
1 | 60 |
(Ⅰ)将全程的运输成本y(元)表示为速度x(km/h)的函数,并指出函数的定义域;
(Ⅱ)判断此函数的单调性,并求当速度为多少时,全程的运输成本最小.
甲、乙 两地相距100km,汽车从甲地匀速行驶到乙地,速度不超过60km/h,已知汽车每小时的运输成本(元)由可变部分和固定部分组成,可变部分与速度x(km/h)的平方成正比例,比例系数为
,固定部分为60元.
(Ⅰ)将全程的运输成本y(元)表示为速度x(km/h)的函数,并指出函数的定义域;
(Ⅱ)判断此函数的单调性,并求当速度为多少时,全程的运输成本最小.
查看习题详情和答案>>
1 |
60 |
(Ⅰ)将全程的运输成本y(元)表示为速度x(km/h)的函数,并指出函数的定义域;
(Ⅱ)判断此函数的单调性,并求当速度为多少时,全程的运输成本最小.