摘要:图5―42(3)如图5―42为某一同学根据他所设计的实验给出的I1.I2图线(I1为A1的示数.I2为A2的示数).由图线可求得被测电池的电动势E= V.内阻r = Ω.

网址:http://m.1010jiajiao.com/timu_id_547237[举报]

 

典型例题

[1]  解析:对系统进行整体分析,受力分析如图1―2:

由平衡条件有:

由此解得 

[2]  解析: (1)设t1t2为声源S发出两个信号的时刻,为观察者接收到两个信号的时刻.则第一个信号经过时间被观察者A接收到,第二个信号经过()时刻被观察者A接收到,且

 

 

 

 

 

 

 

设声源发出第一个信号时,SA两点间的距离为L,两个声信号从声源传播到观察者的过程中,它们的运动的距离关系如图所示,

可得

由以上各式解得

(2)设声源发出声波的振动周期为T,这样,由以上结论,观察者接收到的声波振动的周期T′,

由此可得,观察者接收到的声波频率与声源发出声波频率间的关系为

[3] 解答:根据题意作图1―4.

对这两个天体而言,它们的运动方程分别为   ①

   ②

以及       ③

由以上三式解得

r1r2的表达式分别代①和②式,

可得

[4]  解答:(1)AB两球以相同的初速度v0,从同一点水平抛出,可以肯定它们沿同一轨道运动.

作细线刚被拉直时刻AB球位置示意图1―5.

根据题意可知:

A球运动时间为t,则B球运动时间为t-0.8,由于AB球在竖直方向上均作自由落体运动,所以有

由此解得t =1s.

(2)细线刚被拉直时,

AB球的水平位移分别为

[5]  解答:(1)A球通过最低点时,作用于环形圆管的压力竖直向下,根据牛顿第三定律,A球受到竖直向上的支持力N1,由牛顿第二定律,有:

     ①

由题意知,A球通过最低点时,B球恰好通过最高点,而且该时刻AB两球作用于圆管的合力为零;可见B球作用于圆管的压力肯定竖直向上,根据牛顿第三定律,圆管对B球的反作用力N2竖直向下;假设B球通过最高点时的速度为v,则B球在该时刻的运动方程为    ②

由题意N1=N2     ③

     ④

B球运用机械能守恒定律     ⑤

解得     ⑥

⑥式代入④式可得:

[6]  解答:火箭上升到最高点的运动分为两个阶段:匀加速上升阶段和竖直上抛阶段.

地面上的摆钟对两个阶段的计时为

即总的读数(计时)为t =t1t2=360(s)

放在火箭中的摆钟也分两个阶段计时.

第一阶段匀加速上升,a=8g,钟摆周期

其钟面指示时间

第二阶段竖直上抛,为匀减速直线运动,加速度竖直向下,a=g,完全失重,摆钟不“走”,计时.可见放在火箭中的摆钟总计时为

综上所述,火箭中的摆钟比地面上的摆钟读数少了

[7]  解答:在情形(1)中,滑块相对于桌面以速度v0=0.1m/s向右做匀速运动,放手后,木板由静止开始向右做匀加速运动.

经时间t,木板的速度增大到v0=0.1m/s,

在5s内滑块相对于桌面向右的位移大小为S1=v0t=0.5m.

而木板向右相对于桌面的位移为

可见,滑块在木板上向右只滑行了S1S2=0.25m,即达到相对静止状态,随后,它们一起以共同速度v0向右做匀速直线运动.只要线足够长,桌上的柱子不阻挡它们运动,滑块就到不了木板的右端.

在情形(2)中,滑块与木板组成一个系统,放手后滑块相树于木板的速度仍为v0,滑块到达木板右端历时

[8]  解答:以m表示球的质量,F表示两球相互作用的恒定斥力,l表示两球间的原始距离.A球作初速度为v0的匀减速运动,B球作初速度为零的匀加速运动.在两球间距由l先减小,到又恢复到l的过程中,A球的运动路程为l1B球运动路程为l2,间距恢复到l时,A球速度为v1B球速度为v2

由动量守恒,有

由功能关系:A球      B球:

根据题意可知l1=l2

由上三式可得

v2=v0v1=0    即两球交换速度.

当两球速度相同时,两球间距最小,设两球速度相等时的速度为v

B球的速度由增加到v0花时间t0,即

解二:用牛顿第二定律和运动学公式.(略)

 

跟踪练习

1.C   提示:利用平衡条件.

2.(1)重物先向下做加速运动,后做减速运动,当重物速度为零时,下降的距离最大,设下降的最大距离为h

由机械能守恒定律得   解得

(2)系统处于平衡状态时,两小环的可能位置为

a.两小环同时位于大圆环的底端

b.两小环同时位于大圆环的顶端

c.两小环一个位于大圆环的顶端,另一个位于大圆环的底端

d.除上述三种情况外,根据对称性可知,系统如能平衡,则小圆环的位置一定关于大圆环竖直对称轴对称.设平衡时,两小圆环在大圆环竖直对称轴两侧角的位置上(如图).

对于重物m,受绳的拉力T与重力mg作用,有T=mg.对于小圆环,受到三个力的作用,水平绳的拉力T,竖直绳的拉力T,大圆环的支持力N.两绳的拉力沿大圆环切向的分力大小相等,方向相反

3.设测速仪扫描速度为v′,因P1P2在标尺上对应间隔为30小格,所以格/s.

测速仪发出超声波信号P1到接收P1的反射信号n1.从图B上可以看出,测速仪扫描12小格,所以测速仪从发出信号P1到接收其反射信号n1所经历时间

汽车接收到P1信号时与测速仪相距

同理,测速仪从发出信号P2到接收到其反射信号n2,测速仪扫描9小格,故所经历时间.汽车在接收到P2信号时与测速仪相距

所以,汽车在接收到P1P2两个信号的时间内前进的距离△S=S1S2=17m.

从图B可以看出,n1P2之间有18小格,所以,测速仪从接收反射信号n1到超声信号P2的时间间隔

所以汽车接收P1P2两个信号之间的时间间隔为

∴汽车速度m/s.

4.从B发出第一个超声波开始计时,经C车接收.故C车第一次接收超声波时与B距离

第二个超声波从发出至接收,经T+△T时间,C车第二车接收超声波时距BC车从接收第一个超声波到接收第二个超声波内前进S2S1,接收第一个超声波时刻,接收第二个超声波时刻为

所以接收第一和第二个超声波的时间间距为

故车速.车向右运动.

5.ACD

6.(1)根据动能定理,可求出卫星由近地点到远地点运动过程中,地球引力对卫星的功为

(2)由牛顿第二定律知   ∴

7.(1)建立如图所示坐标系,将v0g进行正交分解.

x方向,小球以为初速度作匀加速运动.

y方向,小球以为初速度,作类竖直上抛运动.

y方向的速度为零时,小球离斜面最远,由运动学公式

小球经时间t上升到最大高度,由

(2)

8.(1)设滑雪者质量为m,斜面与水平面夹角为,滑雪者滑行过程中克服摩擦力做功   ①

由动能定理    ②

离开B点时的速度     ③

(2)设滑雪者离开B点后落在台阶上

可解得 ④         此时必须满足  ⑤

时,滑雪者直接落到地面上,

可解得

9.AC

10.摆球先后以正方形的顶点为圆心,半径分别为R1=4aR2=3aR3=2aR4=a为半径各作四分之一圆周的圆运动.

当摆球从P点开始,沿半径R1=4a运动到最低点时的速度v1

根据动量定理  ①

当摆球开始以v1B点以半径R2=3a作圆周运动时,摆线拉力最大,为Tmax=7mg,这时摆球的运动方程为        ②

由此求得v0的最大许可值为

当摆球绕C点以半径R3=2a运动到最高点时,为确保沿圆周运动,

到达最高点时的速度(重力作向心力)

由动能定理

11.B

12.由题意知,周期为.波速

PQ两点距离相差次全振动所需时间即

13.ABC  开始时小车上的物体受弹簧水平向右的拉力为6N,水平向左的静摩擦力也为6N,合力为零.沿水平向右方向对小车施加以作用力,小车向右做加速运动时,车上的物体沿水平向右方向上的合力(F=ma)逐渐增大到8N后恒定.在此过程中向左的静摩擦力先减小,改变方向后逐渐增大到(向右的)2N而保持恒定;弹簧的拉力(大小、方向)始终没有变,物体与小车保持相对静止,小车上的物体不受摩擦力作用时,向右的加速度由弹簧的拉力提供:

14.(1)设物体与板的位移分别为SS,则由题意有    ①

    ②     解得:

(2)由

,故板与桌面之间的动摩擦因数

15.在0~10s内,物体的加速度(正向)

在10~14s内,物体的加速度 (反向)

由牛顿第二定律    ①              ② 

由此解得F=8.4N    =0.34

16.(1)依题意得=0,设小滑块在水平面上运动的加速度大小为a

由牛顿第二定律,,由运动学公式,解得

(2)滑块在水平面上运动时间为t1,由

在斜面上运动的时间

(3)若滑块在A点速度为v1=5m/s,则运动到B点的速度

即运动到B点后,小滑块将做平抛运动.

假设小滑块不会落到斜面上,则经过落到水平面上,

则水平位移

所以假设正确,即小滑块从A点运动到地面所需时间为

 

专题二  动量与机械能

 

典型例题

[1]  D

解析:本题辨析一对平衡力和一对作用力和反作用力的功、冲量.因为,一对平衡力大小相等、方向相反,作用在同一物体上,所以,同一段时间内,它们的冲量大小相等、方向相反,故不是相同的冲量,则①错误.如果在同一段时间内,一对平衡力做功,要么均为零(静止),要么大小相等符号相反(正功与负功),故②正确.至于一对作用力与反作用力,虽然两者大小相等,方向相反,但分别作用在两个不同物体上(对方物体),所以,即使在同样时间内,力的作用点的位移不是一定相等的(子弹穿木块中的一对摩擦力),则做功大小不一定相等.而且作功的正负号也不一定相反(点电荷间相互作用力、磁体间相互作用力的做功,都是同时做正功,或同时做负功.)因此③错误,④正确.综上所述,选项D正确.

【例2】  解析:(1)飞机达到最大速度时牵引力F与其所受阻力f 大小相等,

P=Fv

(2)航空母舰上飞机跑道的最小长度为s,由动能定理得

 将代入上式得

【例3】  解析:解法1(程序法):

选物体为研究对象,在t1时间内其受力情况如图①所示,选F的方向为正方向,根据牛顿第二定律,物体运动的加速度为

 

 

 

 

 

 

撤去F时物体的速度为v1=a1t1=2×6m/s=12m/s

撤去F后,物体做匀减速运动,其受力情况如图②所示,根据牛顿第二定律,其运动的加速度为

物体开始碰撞时的速度为v2=v1a2t2=[12+(-2)×2]m/s=8m/s.

再研究物体碰撞的过程,设竖直墙对物体的平均作用力为,其方向水平向左.若选水平向左为正方向,根据动量定理有

解得

解法2(全程考虑):取从物体开始运动到碰撞后反向弹回的全过程应用动量定理,并取F的方向为正方向,则

所以

点评:比较上述两种方法看出,当物体所受各力的作用时间不相同且间断作用时,应用动量定理解题对全程列式较简单,这时定理中的合外力的冲量可理解为整个运动过程中各力冲量的矢量和.此题应用牛顿第二定律和运动学公式较繁琐.

另外有些变力作用或曲线运动的题目用牛顿定律难以解决,应用动量定理解决可化难为易.

【例4】  解析:该题用守恒观点和转化观点分别解答如下:

解法一:(守恒观点)选小球为研究对象,设小球沿半径为R的轨道做匀速圆周运动的线速度为v0,根据牛顿第二定律有   ①

当剪断两物体之间的轻线后,轻线对小球的拉力减小,不足以维持小球在半径为R的轨道上继续做匀速圆周运动,于是小球沿切线方向逐渐偏离原来的轨道,同时轻线下端的物体m1逐渐上升,且小球的线速度逐渐减小.假设物体m1上升高度为h,小球的线速度减为v时,小球在半径为(Rh)的轨道上再次做匀速圆周运动,根据牛顿第二定律有      ②

再选小球M、物体m1与地球组所的系统为研究对象,研究两物体间的轻线剪断后物体m1上升的过程,由于只有重力做功,所以系统的机械能守恒.选小球做匀速圆周运动的水平面为零势面,设小球沿半径为R的轨道做匀速圆周运动时m1到水平板的距离为H,根据机械能守恒定律有    ③

以上三式联立解得 

解法二:(转化观点)与解法一相同,首先列出①②两式,然后再选小球、物体m1与地球组成的系统为研究对象,研究两物体间的轻线剪断后物体m1上升的过程,由于系统的机械能守恒,所以小球动能的减少量等于物体m1重力势能的增加量.即

     ④

①、②、④式联立解得 

点评:比较上述两种解法可以看出,根据机械能守恒定律应用守恒观点列方程时,需要选零势面和找出物体与零势面的高度差,比较麻烦;如果应用转化观点列方程,则无需选零势面,往往显得简捷.

【例5】  解析:(1)第一颗子弹射入木块过程中动量守恒   ①

解得:=3m/s   ②

木块向右作减速运动加速度m/s2    ③

木块速度减小为零所用时间      ④

解得t1 =0.6s<1s    ⑤

所以木块在被第二颗子弹击中前向右运动离A点最远时,速度为零,移动距离为

解得s1=0.9m.     ⑥

(2)在第二颗子弹射中木块前,木块再向左作加速运动,时间t2=1s-0.6s=0.4s   ⑦

速度增大为v­2=at2=2m/s(恰与传送带同速)      ⑧

向左移动的位移为    ⑨

所以两颗子弹射中木块的时间间隔内,木块总位移S0=S1S2=0.5m方向向右     ⑩

第16颗子弹击中前,木块向右移动的位移为    11

第16颗子弹击中后,木块将会再向右先移动0.9m,总位移为0.9m+7.5=8.4m>8.3m木块将从B端落下.

所以木块在传送带上最多能被16颗子弹击中.

(3)第一颗子弹击穿木块过程中产生的热量为

   12

木块向右减速运动过程中板对传送带的位移为    13

产生的热量为Q2=      14

木块向左加速运动过程中相对传送带的位移为     15

产生的热量为     16

第16颗子弹射入后木块滑行时间为t3    17

解得t3=0.4s   18

木块与传送带的相对位移为S=v1­t3+0.8    19

产生的热量为Q4=   20

全过程中产生的热量为Q=15(Q1Q2Q­3)+Q1Q4

解得Q=14155.5J    21

【例6】  解析:运动分析:当小车被挡住时,物体落在小车上沿曲面向下滑动,对小车有斜向下方的压力,由于P的作用小车处于静止状态,物体离开小车时速度为v1,最终平抛落地,当去掉挡板,由于物对车的作用,小车将向左加速运动,动能增大,物体相对车滑动的同时,随车一起向左移动,整个过程机械能守恒,物体滑离小车时的动能将比在前一种情况下小,最终平抛落地,小车同时向前运动,所求距离是物体平抛过程中的水平位移与小车位移的和.求出此种情况下,物体离开车时的速度v2,及此时车的速度以及相应运动的时间是关键,由于在物体与小车相互作用过程中水平方向动量守恒这是解决v2间关系的具体方法.

(1)挡住小车时,求物体滑落时的速度v1,物体从最高点下落至滑离小车时机械能守恒,设车尾部(右端)离地面高为h,则有,     ①

由平抛运动的规律s0=v1t    ②

.    ③

(2)设去掉挡板时物体离开小车时速度为v2,小车速度为,物体从最高点至离开小车之时系统机械能守恒    ④

物体与小车相互作用过程中水平方向动量守恒.   ⑤

此式不仅给出了v2­与大小的关系,同时也说明了v­2是向右的.

物体离开车后对地平抛       ⑥

     ⑦

车在时间内向前的位移    ⑧

比较式⑦、③,得解式①、④、⑤,得

此种情况下落地点距车右端的距离

点评:此题解题过程运用了机械能守恒、动量守恒及平抛运动的知识,另外根据动量守恒判断m离车时速度的方向及速度间的关系也是特别重要的.

【例7】  解析:(1)设第一次碰墙壁后,平板车向左移动s,速度为0.由于体系总动量向右,平板车速度为零时,滑块还在向右滑行.

由动能定理    ①

            ②

代入数据得      ③

(3)假如平板车在第二次碰撞前还未和滑块相对静止,那么其速度的大小肯定还是2m/s,滑块的速度则大于2m/s,方向均向右.这样就违反动量守恒.所以平板车在第二次碰撞前肯定已和滑块具有共同速度v.此即平板车碰墙前瞬间的速度.

     ④

      ⑤

代入数据得    ⑥

(3)平板车与墙壁第一次碰撞后到滑块与平板又达到共同速度v前的过程,可用图(a)(b)(c)表示.(a)为平板车与墙壁撞后瞬间滑块与平板车的位置,图(b)为平板车到达最左端时两者的位置,图(c)为平板车与滑块再次达到共同速度为两者的位置.在此过程中滑块动能减少等于摩擦力对滑块所做功,平板车动能减少等于摩擦力对平板车所做功(平板车从BA再回到B的过程中摩擦力做功为零),其中分别为滑块和平板车的位移.滑块和平板车动能总减少为其中为滑块相对平板车的位移.此后,平板车与墙壁发生多次碰撞,每次情况与此类似,最后停在墙边.设滑块相对平板车总位移为l,则有    ⑦

        ⑧

代入数据得      ⑨

l即为平板车的最短长度.

【例8】  解析:本题应用动量守恒,机械能守恒及能量守恒定律联合求解。

m下落在砂箱砂里的过程中,由于车与小泥球m在水平方向不受任何外力作用,故车及砂、泥球整个系统的水平方向动量守恒,则有:

    ①

此时物块A由于不受外力作用,继续向右做匀速直线运动再与轻弹簧相碰,以物块A、弹簧、车系统为研究对象,水平方向仍未受任何外力作用,系统动量守恒,当弹簧被压缩到最短,达最大弹性势能E­p­时,整个系统的速度为v2,则由动量守恒和机械能守恒有:

     ②

    ③

由①②③式联立解得:     ④

之后物块A相对地面仍向右做变减速运动,而相对车则向车的左面运动,直到脱离弹簧,获得对车向左的动能,设刚滑至车尾,则相对车静止,由能量守恒,弹性势能转化为系统克服摩擦力做功转化的内能有:    ⑤

由④⑤两式得:  

跟踪练习

1.【答案】 D

【解析】 在△t1时间内,I1=Ft1=mv=△p1,在△t2时间内.I2=Ft2=2mvmv=mv=△p2  ∴I1=I2

W1<W2,D选项正确.

【说明】 物体在恒定的合外力F作用下做直线运动,由牛顿第二定律可知物体做匀加速直线运动,速度由零增大到v的时间△t2和由v增大到2v的时间△t2是相等的,所以在△t1和△t2的两段时间内合外力的冲量是相等的.在△t1的平均速度小于△t2时间内的平均速度,从而得出在△t1内的位移小于在△t­2时间的位移,恒力F所做的功W1<W2.D选项正确.

2.【答案】 C

【解析】 无论子弹射入的深度如何,最终子弹和木块都等速,由动量守恒定律知,两种情况最终两木块(包括子弹)速度都相等.对木块由动能定理知:两次子弹对木块做功一样多.由动量定理知:两次木块所受冲量一样大.对系统由能的转化和守恒定律知,两次损失的机械能一样多,产生的热量也一样多.

3.【解析】 (1)物体由A滑到B的过程中,容器不脱离墙,物块由B沿球面向上滑时,物块对容器的作用力有一水平向右的分量,容器将脱离墙向右运动.因此,物块由AB动量变化量最大,受容器的冲量最大,竖直墙作用于容器的冲量也最大.

物块由AB机械能守恒,设物块滑到B的速度为vB,则

    ①

物块动量变化量方向沿水平方向.容器作用于物块的冲量为

容器不动,墙对容器的冲量,方向水平向右,这是最大冲量.

(2)物块从B处上升,容器向右运动过程中,系统水平方向动量守恒.物块上升到最高处相对容器静止的时刻,物块与容器具有共同的水平速度,设它为v,则由动量守恒定律得    ②

系统机械能守恒    ③

联立①②③式解得   M=3m

4.【解析】 设离子喷出尾喷管时的速度为v,单位时间内喷出n个离子,则△t时间内喷出离子数为nt,由动量定理得

在发射离子过程中,卫星和发射出的离子系统,动量守恒,设喷出离子总质量为△m,则有△mv=(M-△m)v  ∵△mm   ∴v

5.【解析】 (1)设整个过程摩擦力做的功是W,由动能定理得:mghW=0    ①

W=mgh

(2)设物块沿轨道AB滑动的加速度为a1

由牛顿第二定律有  ②

设物块到达B点时的速度为VB,则有VB=a1t1   ③

设物块沿轨道BC滑动的加速度为a2,由牛顿第二定律有    ④

物块从B点开始作匀减速运动,到达C点时,速度为零,故有    ⑤

由②③④⑤式可得:    ⑥

(3)使物块匀速地、缓慢地沿原路回到A点所需做的功应该是克服重力和阻力所做功之和,即是W1=mghW=2mgh

6.【解析】 (1)物体PA下滑经BC过程中根据动能定理:

C点时

根据牛顿第三定律,PC点的压力

(2)从CE机械能守恒

ED间高度差

(3)物体P最后在B与其等高的圆弧轨道上来回运动时,经C点压力最小,由BC根据机械能守恒

根据牛顿第三定律  压力

7.【解析】 物块的运动可分为以下四个阶段:①弹簧弹力做功阶段;②离开弹簧后在AB段的匀速直线运动阶段;③从BC所进行的变速圆周运动阶段;④离开C点后进行的平抛运动阶段.弹簧弹力是变化的,求弹簧弹力的功可根据效果――在弹力作用下物块获得的机械能,即到达B点的动能求解.物块从BC克服阻力做的功也是变力,同样只能根据B点和C点两点的机械能之差判断.因此求出物块在B点和C点的动能是关键.可根据题设条件:“进入导轨瞬间对导轨的压力为其重力的7倍”、“恰能到达C点”,求出

物块在B点时受力mg和导轨的支持力N=7mg,由牛顿第二定律,

物块到达C点仅受重力mg,根据牛顿第二定律,有

(1)根据动能定理,可求得弹簧弹力对物体所做的功为W=EkB=3mgR

(2)物体从BC只有重力和阻力做功,根据动能定理,

即物体从BC克服阻力做的功为0.5mgR

(3)物体离开轨道后做平抛运动,仅有重力做功,机械能守恒,

评析:中学阶段不要求直接用

第Ⅰ卷(选择题 共31分)

一、单项选择题.本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意.

1. 关于科学家和他们的贡献,下列说法中正确的是[来源:Www..com]

A.安培首先发现了电流的磁效应

B.伽利略认为自由落体运动是速度随位移均匀变化的运动

C.牛顿发现了万有引力定律,并计算出太阳与地球间引力的大小

D.法拉第提出了电场的观点,说明处于电场中电荷所受到的力是电场给予的

2.如图为一种主动式光控报警器原理图,图中R1R2为光敏电阻,R3R4为定值电阻.当射向光敏电阻R1R2的任何一束光线被遮挡时,都会引起警铃发声,则图中虚线框内的电路是

A.与门                  B.或门               C.或非门                  D.与非门

 


3.如图所示的交流电路中,理想变压器原线圈输入电压为U1,输入功率为P1,输出功率为P2,各交流电表均为理想电表.当滑动变阻器R的滑动头向下移动时

A.灯L变亮                                    B.各个电表读数均变大

C.因为U1不变,所以P1不变                              D.P1变大,且始终有P1= P2

4.竖直平面内光滑圆轨道外侧,一小球以某一水平速度v0A点出发沿圆轨道运动,至B点时脱离轨道,最终落在水平面上的C点,不计空气阻力.下列说法中不正确的是

A.在B点时,小球对圆轨道的压力为零

B.BC过程,小球做匀变速运动

C.在A点时,小球对圆轨道压力大于其重力

D.AB过程,小球水平方向的加速度先增加后减小

5.如图所示,水平面上放置质量为M的三角形斜劈,斜劈顶端安装光滑的定滑轮,细绳跨过定滑轮分别连接质量为m1m2的物块.m1在斜面上运动,三角形斜劈保持静止状态.下列说法中正确的是

A.若m2向下运动,则斜劈受到水平面向左摩擦力

B.若m1沿斜面向下加速运动,则斜劈受到水平面向右的摩擦力

C.若m1沿斜面向下运动,则斜劈受到水平面的支持力大于(m1+ m2+Mg

D.若m2向上运动,则轻绳的拉力一定大于m2g

二、多项选择题.本题共4小题,每小题4分,共计16分.每小题有多个选项符合题意.全部选对的得4分,选对但不全的得2分,错选或不答的得0分.

6.木星是太阳系中最大的行星,它有众多卫星.观察测出:木星绕太阳作圆周运动的半径为r1 周期为T1;木星的某一卫星绕木星作圆周运动的半径为r2 周期为T2.已知万有引力常量为G,则根据题中给定条件

A.能求出木星的质量

B.能求出木星与卫星间的万有引力

C.能求出太阳与木星间的万有引力

D.可以断定

7.如图所示,xOy坐标平面在竖直面内,x轴沿水平方向,y轴正方向竖直向上,在图示空间内有垂直于xOy平面的水平匀强磁场.一带电小球从O点由静止释放,运动轨迹如图中曲线.关于带电小球的运动,下列说法中正确的是

A.OAB轨迹为半圆

B.小球运动至最低点A时速度最大,且沿水平方向

C.小球在整个运动过程中机械能守恒

D.小球在A点时受到的洛伦兹力与重力大小相等

8.如图所示,质量为M、长为L的木板置于光滑的水平面上,一质量为m的滑块放置在木板左端,滑块与木板间滑动摩擦力大小为f,用水平的恒定拉力F作用于滑块.当滑块运动到木板右端时,木板在地面上移动的距离为s,滑块速度为v1,木板速度为v2,下列结论中正确的是

A.上述过程中,F做功大小为            

B.其他条件不变的情况下,F越大,滑块到达右端所用时间越长

C.其他条件不变的情况下,M越大,s越小

D.其他条件不变的情况下,f越大,滑块与木板间产生的热量越多

9.如图所示,两个固定的相同细环相距一定的距离,同轴放置,O1O2分别为两环的圆心,两环分别带有均匀分布的等量异种电荷.一带正电的粒子从很远处沿轴线飞来并穿过两环.则在带电粒子运动过程中

A.在O1点粒子加速度方向向左

B.从O1O2过程粒子电势能一直增加

C.轴线上O1点右侧存在一点,粒子在该点动能最小

D.轴线上O1点右侧、O2点左侧都存在场强为零的点,它们关于O1O2连线中点对称

 


第Ⅱ卷(非选择题 共89分)

三、简答题:本题分必做题(第lO、11题)和选做题(第12题)两部分,共计42分.请将解答填写在答题卡相应的位置.

必做题

10.测定木块与长木板之间的动摩擦因数时,采用如图所示的装置,图中长木板水平固定.

(1)实验过程中,电火花计时器应接在  ▲  (选填“直流”或“交流”)电源上.调整定滑轮高度,使  ▲ 

(2)已知重力加速度为g,测得木块的质量为M,砝码盘和砝码的总质量为m,木块的加速度为a,则木块与长木板间动摩擦因数μ=  ▲ 

(3)如图为木块在水平木板上带动纸带运动打出的一条纸带的一部分,0、1、2、3、4、5、6为计数点,相邻两计数点间还有4个打点未画出.从纸带上测出x1=3.20cm,x2=4.52cm,x5=8.42cm,x6=9.70cm.则木块加速度大小a=  ▲  m/s2(保留两位有效数字).

 


11.为了测量某电池的电动势 E(约为3V)和内阻 r,可供选择的器材如下:

A.电流表G1(2mA  100Ω)             B.电流表G2(1mA  内阻未知)

C.电阻箱R1(0~999.9Ω)                      D.电阻箱R2(0~9999Ω)

E.滑动变阻器R3(0~10Ω  1A)         F.滑动变阻器R4(0~1000Ω  10mA)

G.定值电阻R0(800Ω  0.1A)               H.待测电池

I.导线、电键若干

(1)采用如图甲所示的电路,测定电流表G2的内阻,得到电流表G1的示数I1、电流表G2的示数I2如下表所示:

I1(mA)

0.40

0.81

1.20

1.59

2.00

I2(mA)

0.20

0.40

0.60

0.80

1.00

 


根据测量数据,请在图乙坐标中描点作出I1I2图线.由图得到电流表G2的内阻等于

  ▲  Ω.

(2)在现有器材的条件下,测量该电池电动势和内阻,采用如图丙所示的电路,图中滑动变阻器①应该选用给定的器材中  ▲  ,电阻箱②选  ▲  (均填写器材代号).

(3)根据图丙所示电路,请在丁图中用笔画线代替导线,完成实物电路的连接.

 


12.选做题(请从A、B和C三小题中选定两小题作答,并在答题卡上把所选题目对应字母后的方框涂满涂黑.如都作答,则按A、B两小题评分.)

A.(选修模块3-3)(12分)

(1)下列说法中正确的是  ▲ 

A.液体表面层分子间距离大于液体内部分子间距离,液体表面存在张力

B.扩散运动就是布朗运动

C.蔗糖受潮后会粘在一起,没有确定的几何形状,它是非晶体

D.对任何一类与热现象有关的宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述

(2)将1ml的纯油酸加到500ml的酒精中,待均匀溶解后,用滴管取1ml油酸酒精溶液,让其自然滴出,共200滴.现在让其中一滴落到盛水的浅盘内,待油膜充分展开后,测得油膜的面积为200cm2,则估算油酸分子的大小是  ▲  m(保留一位有效数字).

(3)如图所示,一直立的汽缸用一质量为m的活塞封闭一定量的理想气体,活塞横截面积为S,汽缸内壁光滑且缸壁是导热的,开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,已知AB=h,大气压强为p0,重力加速度为g

①求活塞停在B点时缸内封闭气体的压强;

②设周围环境温度保持不变,求整个过程中通过缸壁传递的热量Q(一定量理想气体的内能仅由温度决定).

B.(选修模块3-4)(12分)

(1)下列说法中正确的是  ▲ 

A.照相机、摄影机镜头表面涂有增透膜,利用了光的干涉原理

B.光照射遮挡物形成的影轮廓模糊,是光的衍射现象

C.太阳光是偏振光

D.为了有效地发射电磁波,应该采用长波发射

(2)甲、乙两人站在地面上时身高都是L0, 甲、乙分别乘坐速度为0.6c和0.8cc为光速)的飞船同向运动,如图所示.此时乙观察到甲的身高L  ▲  L0;若甲向乙挥手,动作时间为t0,乙观察到甲动作时间为t1,则t1  ▲  t0(均选填“>”、“ =” 或“<”).

(3)x=0的质点在t=0时刻开始振动,产生的波沿x轴正方向传播,t1=0.14s时刻波的图象如图所示,质点A刚好开始振动.

①求波在介质中的传播速度;

②求x=4m的质点在0.14s内运动的路程.

   C.(选修模块3-5)(12分)

(1)下列说法中正确的是  ▲ 

A.康普顿效应进一步证实了光的波动特性

B.为了解释黑体辐射规律,普朗克提出电磁辐射的能量是量子化的

C.经典物理学不能解释原子的稳定性和原子光谱的分立特征

D.天然放射性元素衰变的快慢与化学、物理状态有关

(2)是不稳定的,能自发的发生衰变.

①完成衰变反应方程    ▲ 

衰变为,经过  ▲  α衰变,  ▲  β衰变.

(3)1919年,卢瑟福用α粒子轰击氮核发现质子.科学研究表明其核反应过程是:α粒子轰击静止的氮核后形成了不稳定的复核,复核发生衰变放出质子,变成氧核.设α粒子质量为m1,初速度为v0,氮核质量为m2,质子质量为m0, 氧核的质量为m3,不考虑相对论效应.

α粒子轰击氮核形成不稳定复核的瞬间,复核的速度为多大?

②求此过程中释放的核能.

四、计算题:本题共3小题,共计47分.解答时请写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.

13.如图所示,一质量为m的氢气球用细绳拴在地面上,地面上空风速水平且恒为v0,球静止时绳与水平方向夹角为α.某时刻绳突然断裂,氢气球飞走.已知氢气球在空气中运动时所受到的阻力f正比于其相对空气的速度v,可以表示为f=kvk为已知的常数).则

(1)氢气球受到的浮力为多大?

(2)绳断裂瞬间,氢气球加速度为多大?

(3)一段时间后氢气球在空中做匀速直线运动,其水平方向上的速度与风速v0相等,求此时气球速度大小(设空气密度不发生变化,重力加速度为g).

 


14.如图所示,光滑绝缘水平面上放置一均匀导体制成的正方形线框abcd,线框质量为m,电阻为R,边长为L.有一方向竖直向下的有界磁场,磁场的磁感应强度为B,磁场区宽度大于L,左边界与ab边平行.线框在水平向右的拉力作用下垂直于边界线穿过磁场区.

(1)若线框以速度v匀速穿过磁场区,求线框在离开磁场时ab两点间的电势差;

(2)若线框从静止开始以恒定的加速度a运动,经过t1时间ab边开始进入磁场,求cd边将要进入磁场时刻回路的电功率;

(3)若线框以初速度v0进入磁场,且拉力的功率恒为P0.经过时间Tcd边进入磁场,此过程中回路产生的电热为Q.后来ab边刚穿出磁场时,线框速度也为v0,求线框穿过磁场所用的时间t

      

15.如图所示,有界匀强磁场的磁感应强度为B,方向垂直纸面向里,MN为其左边界,磁场中放置一半径为R的圆柱形金属圆筒,圆心OMN的距离OO1=2R,圆筒轴线与磁场平行.圆筒用导线通过一个电阻r0接地,最初金属圆筒不带电.现有范围足够大的平行电子束以速度v0从很远处沿垂直于左边界MN向右射入磁场区,已知电子质量为m,电量为e

(1)若电子初速度满足,则在最初圆筒上没有带电时,能够打到圆筒上的电子对应MN边界上O1两侧的范围是多大?

(2)当圆筒上电量达到相对稳定时,测量得到通过电阻r0的电流恒为I,忽略运动电子间的相互作用,求此时金属圆筒的电势φ和电子到达圆筒时速度v(取无穷远处或大地电势为零).

(3)在(2)的情况下,求金属圆筒的发热功率.

 


查看习题详情和答案>>
(Ⅰ)一物理兴趣小组利用学校实验室的数字实验系统探究物体作圆周运动时向心力与角速度、半径的关系.
实验序号 1 2 3 4 5 6 7 8
F/N 2.42 1.90 1.43 0.97 0.76 0.50 0.23 0.06
ω/rad?s-1 28.8 25.7 22.0 18.0 15.9 13.0 8.5 4.3
①首先,他们让一砝码做半径r为0.08m的圆周运动,数字实验系统通过测量和计算得到若干组向心力F和对应的角速度ω,如下表.请你根据表中的数据在图甲上绘出F-ω的关系图象.

②通过对图象的观察,兴趣小组的同学猜测F与ω2成正比.你认为,可以通过进一步转换,做出
F-ω2
F-ω2
关系图象来确定他们的猜测是否正确.
③在证实了F∝ω2之后,他们将砝码做圆周运动的半径r再分别调整为0.04m、0.12m,又得到了两条F-ω图象,他们将三次实验得到的图象放在一个坐标系中,如图乙所示.通过对三条图象的比较、分析、讨论,他们得出F∝r的结论,你认为他们的依据是
做一条平行与纵轴的辅助线,观察和图象的交点中力的数值之比是否为1:2:3
做一条平行与纵轴的辅助线,观察和图象的交点中力的数值之比是否为1:2:3

④通过上述实验,他们得出:做圆周运动的物体受到的向心力F与角速度ω、半径r的数学关系式是F=kω2r,其中比例系数k的大小为
0.037
0.037
.(计算结果取2位有效数字)
(Ⅱ)某同学想测量某导电溶液的电阻率,先在一根均匀的长玻璃管两端各装了一个电极(接触电阻不计),两电极相距L=0.700m,其间充满待测的导电溶液.
用如下器材进行测量:
电压表(量程l5V,内阻约30kΩ); 电流表(量程300μA,内阻约50Ω);
滑动变阻器(10Ω,1A);          电池组(电动势E=12V,内阻r=6Ω);
单刀单掷开关一个、导线若干.
下表是他测量通过管中导电液柱的电流及两端电压的实验数据.实验中他还用20分度的游标卡尺测量了玻璃管的内径,结果如图2所示
U/V 0 1.0 3.0 5.0 7.0 9.0 11.0
I/μA 0 22 65 109 155 175 240

根据以上所述请回答下面的问题:
(1)玻璃管内径d的测量值为
30.75
30.75
mm;
(2)根据表1数据在图3坐标中已描点,请作出U-I图象,根据图象求出电阻R=
4.4×104~4.8×104
4.4×104~4.8×104
Ω(保留两位有效数字);
(3)计算导电溶液的电阻率表达式是ρ=
πRd
2
 
4L
πRd
2
 
4L
 (用R、d、L表示)
(4)请在(图l)中补画出未连接的导线.
查看习题详情和答案>>

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网