网址:http://m.1010jiajiao.com/timu_id_531479[举报]
已知函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)设,证明:对任意
,
.
1.选修4-1:几何证明选讲
如图,的角平分线
的延长线交它的外接圆于点
(Ⅰ)证明:∽△
;
(Ⅱ)若的面积
,求
的大小.
证明:(Ⅰ)由已知条件,可得∠BAE=∠CAD.
因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD.
故△ABE∽△ADC.
(Ⅱ)因为△ABE∽△ADC,所以,即AB·AC=AD·AE.
又S=AB·ACsin∠BAC,且S=
AD·AE,故AB·ACsin∠BAC=AD·AE.
则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.
查看习题详情和答案>>
如图,长方体中,底面
是正方形,
是
的中点,
是棱
上任意一点。
(Ⅰ)证明: ;
(Ⅱ)如果=2 ,
=
,
, 求
的长。
【解析】(Ⅰ)因底面是正方形,故,又侧棱垂直底面,可得
,而
,所以
面
,因
,所以
面
,又
面
,所以
;
(Ⅱ)因=2 ,
=
,,可得
,
,设
,由
得
,即
,解得
,即
的长为
。
查看习题详情和答案>>
如图,在四棱锥中,
⊥底面
,底面
为正方形,
,
,
分别是
,
的中点.
(I)求证:平面
;
(II)求证:;
(III)设PD=AD=a, 求三棱锥B-EFC的体积.
【解析】第一问利用线面平行的判定定理,,得到
第二问中,利用,所以
又因为,
,从而得
第三问中,借助于等体积法来求解三棱锥B-EFC的体积.
(Ⅰ)证明: 分别是
的中点,
,
. …4分
(Ⅱ)证明:四边形
为正方形,
.
,
.
,
,
.
,
. ………8分
(Ⅲ)解:连接AC,DB相交于O,连接OF, 则OF⊥面ABCD,
∴
查看习题详情和答案>>
((本小题共13分)
若数列满足
,数列
为
数列,记
=
.
(Ⅰ)写出一个满足,且
〉0的
数列
;
(Ⅱ)若,n=2000,证明:E数列
是递增数列的充要条件是
=2011;
(Ⅲ)对任意给定的整数n(n≥2),是否存在首项为0的E数列,使得
=0?如果存在,写出一个满足条件的E数列
;如果不存在,说明理由。
【解析】:(Ⅰ)0,1,2,1,0是一具满足条件的E数列A5。
(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5)
(Ⅱ)必要性:因为E数列A5是递增数列,所以.所以A5是首项为12,公差为1的等差数列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a1000
1,a2000—a1000
1……a2—a1
1所以a2000—a
19999,即a2000
a1+1999.又因为a1=12,a2000=2011,所以a2000=a1+1999.故
是递增数列.综上,结论得证。
查看习题详情和答案>>