摘要:AD⊥DE.在第(19)图2中.因A-DE-B是直二面角.AD⊥DE,故AD⊥底面DBCE.从而AD⊥DB.而DB⊥BC,故DB为异面直线AD与BC的公垂线.
网址:http://m.1010jiajiao.com/timu_id_531349[举报]
请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.
(本小题满分10分)选修4—1:几何证明选讲
如图,⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.
(Ⅰ)求证:AD∥EC;
(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.
查看习题详情和答案>>
请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.
(本小题满分10分)选修4—1:几何证明选讲
如图,⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.
(Ⅰ)求证:AD∥EC; (Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.
(请考生在第22、23两题中任选一题作答,如果多做。则按所做的第一题记分.
(本小题满分10分)选修4-1:几何证明选讲
如图:AB是⊙O的直径,G是AB延长线上的一点,GCD是⊙O的割线,过点G作AG的垂线,交直线AC于点E,交直线AD于点F,过点G作⊙O的切线,切点为H.求证:
(Ⅰ)C、D、F、E四点共圆;
(Ⅱ)GH2=GE·GF.