网址:http://m.1010jiajiao.com/timu_id_530020[举报]
设抛物线:(>0)的焦点为,准线为,为上一点,已知以为圆心,为半径的圆交于,两点.
(Ⅰ)若,的面积为,求的值及圆的方程;
(Ⅱ)若,,三点在同一条直线上,直线与平行,且与只有一个公共点,求坐标原点到,距离的比值.
【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.
【解析】设准线于轴的焦点为E,圆F的半径为,
则|FE|=,=,E是BD的中点,
(Ⅰ) ∵,∴=,|BD|=,
设A(,),根据抛物线定义得,|FA|=,
∵的面积为,∴===,解得=2,
∴F(0,1), FA|=, ∴圆F的方程为:;
(Ⅱ) 解析1∵,,三点在同一条直线上, ∴是圆的直径,,
由抛物线定义知,∴,∴的斜率为或-,
∴直线的方程为:,∴原点到直线的距离=,
设直线的方程为:,代入得,,
∵与只有一个公共点, ∴=,∴,
∴直线的方程为:,∴原点到直线的距离=,
∴坐标原点到,距离的比值为3.
解析2由对称性设,则
点关于点对称得:
得:,直线
切点
直线
坐标原点到距离的比值为
查看习题详情和答案>>
设点是抛物线的焦点,是抛物线上的个不同的点().
(1) 当时,试写出抛物线上的三个定点、、的坐标,从而使得
;
(2)当时,若,
求证:;
(3) 当时,某同学对(2)的逆命题,即:
“若,则.”
开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
① 试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分);
② 对任意给定的大于3的正整数,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);
③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).
【评分说明】本小题若填空不止一个研究方向,则以实得分最高的一个研究方向的得分作为本小题的最终得分.
【解析】第一问利用抛物线的焦点为,设,
分别过作抛物线的准线的垂线,垂足分别为.
由抛物线定义得到
第二问设,分别过作抛物线的准线垂线,垂足分别为.
由抛物线定义得
第三问中①取时,抛物线的焦点为,
设,分别过作抛物线的准线垂线,垂足分别为.由抛物线定义得
,
则,不妨取;;;
解:(1)抛物线的焦点为,设,
分别过作抛物线的准线的垂线,垂足分别为.由抛物线定义得
因为,所以,
故可取满足条件.
(2)设,分别过作抛物线的准线垂线,垂足分别为.
由抛物线定义得
又因为
;
所以.
(3) ①取时,抛物线的焦点为,
设,分别过作抛物线的准线垂线,垂足分别为.由抛物线定义得
,
则,不妨取;;;,
则,
.
故,,,是一个当时,该逆命题的一个反例.(反例不唯一)
② 设,分别过作
抛物线的准线的垂线,垂足分别为,
由及抛物线的定义得
,即.
因为上述表达式与点的纵坐标无关,所以只要将这点都取在轴的上方,则它们的纵坐标都大于零,则
,
而,所以.
(说明:本质上只需构造满足条件且的一组个不同的点,均为反例.)
③ 补充条件1:“点的纵坐标()满足 ”,即:
“当时,若,且点的纵坐标()满足,则”.此命题为真.事实上,设,
分别过作抛物线准线的垂线,垂足分别为,由,
及抛物线的定义得,即,则
,
又由,所以,故命题为真.
补充条件2:“点与点为偶数,关于轴对称”,即:
“当时,若,且点与点为偶数,关于轴对称,则”.此命题为真.(证略)
查看习题详情和答案>>
设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合。
对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n):
记K(A)为∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 对如下数表A,求K(A)的值;
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)设数表A∈S(2,3)形如
1 |
1 |
c |
a |
b |
-1 |
求K(A)的最大值;
(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因为,
所以
(2) 不妨设.由题意得.又因为,所以,
于是,,
所以,当,且时,取得最大值1。
(3)对于给定的正整数t,任给数表如下,
… |
|||
… |
任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表
,并且,因此,不妨设,
且。
由得定义知,,
又因为
所以
所以,
对数表:
1 |
1 |
… |
1 |
… |
||
… |
-1 |
… |
-1 |
则且,
综上,对于所有的,的最大值为
查看习题详情和答案>>
设函数=的所有正的极小值点从小到大排成的数列为.
(Ⅰ)求数列的通项公式.
(Ⅱ)设的前项和为,求.
【解析】 (Ⅰ),令,可得,或,,又由极小值点定义可判定。
(Ⅱ)由(Ⅰ)知,所以,
即.
查看习题详情和答案>>
设A是如下形式的2行3列的数表,
a |
b |
c |
d |
e |
f |
满足性质P:a,b,c,d,e,f,且a+b+c+d+e+f=0
记为A的第i行各数之和(i=1,2), 为A的第j列各数之和(j=1,2,3)记为中的最小值。
(1)对如下表A,求的值
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)设数表A形如
1 |
1 |
-1-2d |
d |
d |
-1 |
其中,求的最大值
(3)对所有满足性质P的2行3列的数表A,求的最大值。
【解析】(1)因为,,所以
(2),
因为,所以,
所以
当d=0时,取得最大值1
(3)任给满足性质P的数表A(如图所示)
a |
b |
c |
d |
e |
f |
任意改变A的行次序或列次序,或把A中的每个数换成它的相反数,所得数表仍满足性质P,并且,因此,不妨设,,
由得定义知,,,,
从而
所以,,由(2)知,存在满足性质P的数表A使,故的最大值为1
【考点定位】此题作为压轴题难度较大,考查学生分析问题解决问题的能力,考查学生严谨的逻辑思维能力
查看习题详情和答案>>