摘要:两式相减即得: 即: ①
网址:http://m.1010jiajiao.com/timu_id_52424[举报]
数列首项
,前
项和
满足等式
(常数
,
……)
(1)求证:为等比数列;
(2)设数列的公比为
,作数列
使
(
……),求数列
的通项公式.
(3)设,求数列
的前
项和
.
【解析】第一问利用由得
两式相减得
故时,
从而又
即
,而
从而 故
第二问中,
又
故
为等比数列,通项公式为
第三问中,
两边同乘以
利用错位相减法得到和。
(1)由得
两式相减得
故时,
从而 ………………3分
又 即
,而
从而 故
对任意
,
为常数,即
为等比数列………………5分
(2)
……………………7分
又故
为等比数列,通项公式为
………………9分
(3)
两边同乘以
………………11分
两式相减得
查看习题详情和答案>>
⊙O1和⊙O2的极坐标方程分别为,
.
⑴把⊙O1和⊙O2的极坐标方程化为直角坐标方程;
⑵求经过⊙O1,⊙O2交点的直线的直角坐标方程.
【解析】本试题主要是考查了极坐标的返程和直角坐标方程的转化和简单的圆冤啊位置关系的运用
(1)中,借助于公式,
,将极坐标方程化为普通方程即可。
(2)中,根据上一问中的圆的方程,然后作差得到交线所在的直线的普通方程。
解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.
(I),
,由
得
.所以
.
即为⊙O1的直角坐标方程.
同理为⊙O2的直角坐标方程.
(II)解法一:由解得
,
即⊙O1,⊙O2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.
解法二: 由,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x
查看习题详情和答案>>