网址:http://m.1010jiajiao.com/timu_id_512573[举报]
已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.
(Ⅰ)求椭圆E的方程;
(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.
【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为
,这样可知得到
。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到
,再利用
可以结合韦达定理求解得到m的值和圆p的方程。
解:(Ⅰ)设椭圆E的方程为
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以椭圆E的方程为…………………………4分
(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分
代入椭圆E方程,得…………………………6分
………………………7分
、
………………8分
………………………9分
……………………………10分
当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,
圆P的方程为(x-2)2+(y-1)2=4;………………………………11分
同理,当m=-3时,直线l方程为y=-x-3,
圆P的方程为(x+2)2+(y+1)2=4
查看习题详情和答案>>
已知曲线上动点
到定点
与定直线
的距离之比为常数
.
(1)求曲线的轨迹方程;
(2)若过点引曲线C的弦AB恰好被点
平分,求弦AB所在的直线方程;
(3)以曲线的左顶点
为圆心作圆
:
,设圆
与曲线
交于点
与点
,求
的最小值,并求此时圆
的方程.
【解析】第一问利用(1)过点作直线
的垂线,垂足为D.
代入坐标得到
第二问当斜率k不存在时,检验得不符合要求;
当直线l的斜率为k时,;,化简得
第三问点N与点M关于X轴对称,设,, 不妨设
.
由于点M在椭圆C上,所以.
由已知,则
,
由于,故当
时,
取得最小值为
.
计算得,,故
,又点
在圆
上,代入圆的方程得到
.
故圆T的方程为:
查看习题详情和答案>>
已知函数的图象过坐标原点O,且在点
处的切线的斜率是
.
(Ⅰ)求实数的值;
(Ⅱ)求在区间
上的最大值;
(Ⅲ)对任意给定的正实数,曲线
上是否存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上?说明理由.
【解析】第一问当时,
,则
。
依题意得:,即
解得
第二问当时,
,令
得
,结合导数和函数之间的关系得到单调性的判定,得到极值和最值
第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设,则
,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
(Ⅰ)当时,
,则
。
依题意得:,即
解得
(Ⅱ)由(Ⅰ)知,
①当时,
,令
得
当变化时,
的变化情况如下表:
|
|
0 |
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
极小值 |
单调递增 |
极大值 |
|
又,
,
。∴
在
上的最大值为2.
②当时,
.当
时,
,
最大值为0;
当时,
在
上单调递增。∴
在
最大值为
。
综上,当时,即
时,
在区间
上的最大值为2;
当时,即
时,
在区间
上的最大值为
。
(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设,则
,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若,则
代入(*)式得:
即,而此方程无解,因此
。此时
,
代入(*)式得: 即
(**)
令
,则
∴在
上单调递增, ∵
∴
,∴
的取值范围是
。
∴对于,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数,曲线
上存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上
查看习题详情和答案>>
已知点为圆
上的动点,且
不在
轴上,
轴,垂足为
,线段
中点
的轨迹为曲线
,过定点
任作一条与
轴不垂直的直线
,它与曲线
交于
、
两点。
(I)求曲线的方程;
(II)试证明:在轴上存在定点
,使得
总能被
轴平分
【解析】第一问中设为曲线
上的任意一点,则点
在圆
上,
∴,曲线
的方程为
第二问中,设点的坐标为
,直线
的方程为
, ………………3分
代入曲线的方程
,可得
∵,∴
确定结论直线与曲线
总有两个公共点.
然后设点,
的坐标分别
,
,则
,
要使被
轴平分,只要
得到。
(1)设为曲线
上的任意一点,则点
在圆
上,
∴,曲线
的方程为
. ………………2分
(2)设点的坐标为
,直线
的方程为
, ………………3分
代入曲线的方程
,可得
,……5分
∵,∴
,
∴直线与曲线
总有两个公共点.(也可根据点M在椭圆
的内部得到此结论)
………………6分
设点,
的坐标分别
,
,则
,
要使被
轴平分,只要
,
………………9分
即,
, ………………10分
也就是,
,
即,即只要
………………12分
当时,(*)对任意的s都成立,从而
总能被
轴平分.
所以在x轴上存在定点,使得
总能被
轴平分
查看习题详情和答案>>