摘要:(Ⅱ)若数列的前项和为.试求.
网址:http://m.1010jiajiao.com/timu_id_50512[举报]
设数列的前
项和为
,如果
为常数,则称数列
为“科比数列”.
(Ⅰ)已知等差数列的首项为1,公差不为零,若
为“科比数列”,求
的通项公式;
(Ⅱ)设数列的各项都是正数,前
项和为
,若
对任意
都成立,试推断数列
是否为“科比数列”?并说明理由.
查看习题详情和答案>>
已知数列的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求的通项公式;
(Ⅱ) 设 (
N*).
①证明: ;
② 求证:.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到
,②由于
,
所以利用放缩法,从此得到结论。
解:(Ⅰ)当时,由
得
. ……2分
若存在由
得
,
从而有,与
矛盾,所以
.
从而由得
得
. ……6分
(Ⅱ)①证明:
证法一:∵∴
∴
∴.…………10分
证法二:,下同证法一.
……10分
证法三:(利用对偶式)设,
,
则.又
,也即
,所以
,也即
,又因为
,所以
.即
………10分
证法四:(数学归纳法)①当时,
,命题成立;
②假设时,命题成立,即
,
则当时,
即
即
故当时,命题成立.
综上可知,对一切非零自然数,不等式②成立. ………………10分
②由于,
所以,
从而.
也即
查看习题详情和答案>>