网址:http://m.1010jiajiao.com/timu_id_497606[举报]
设函数.
(I)求的单调区间;
(II)当0<a<2时,求函数在区间
上的最小值.
【解析】第一问定义域为真数大于零,得到.
.
令,则
,所以
或
,得到结论。
第二问中, (
).
.
因为0<a<2,所以,
.令
可得
.
对参数讨论的得到最值。
所以函数在
上为减函数,在
上为增函数.
(I)定义域为. ………………………1分
.
令,则
,所以
或
. ……………………3分
因为定义域为,所以
.
令,则
,所以
.
因为定义域为,所以
. ………………………5分
所以函数的单调递增区间为,
单调递减区间为.
………………………7分
(II) (
).
.
因为0<a<2,所以,
.令
可得
.…………9分
所以函数在
上为减函数,在
上为增函数.
①当,即
时,
在区间上,
在
上为减函数,在
上为增函数.
所以. ………………………10分
②当,即
时,
在区间
上为减函数.
所以.
综上所述,当时,
;
当时,
查看习题详情和答案>>
已知函数在
处取得极值2.
⑴ 求函数的解析式;
⑵ 若函数在区间
上是单调函数,求实数m的取值范围;
【解析】第一问中利用导数
又f(x)在x=1处取得极值2,所以,
所以
第二问中,
因为,又f(x)的定义域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上单调递增,在
上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有
,得
解:⑴ 求导,又f(x)在x=1处取得极值2,所以
,即
,所以
…………6分
⑵ 因为,又f(x)的定义域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上单调递增,在
上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有
,得
, …………9分
当f(x)在区间(m,2m+1)上单调递减,则有
得
…………12分
.综上所述,当时,f(x)在(m,2m+1)上单调递增,当
时,f(x)在(m,2m+1)上单调递减;则实数m的取值范围是
或
查看习题详情和答案>>
如图,,
,…,
,…是曲线
上的点,
,
,…,
,…是
轴正半轴上的点,且
,
,…,
,…
均为斜边在
轴上的等腰直角三角形(
为坐标原点).
(1)写出、
和
之间的等量关系,以及
、
和
之间的等量关系;
(2)求证:(
);
(3)设,对所有
,
恒成立,求实数
的取值范围.
【解析】第一问利用有,
得到
第二问证明:①当时,可求得
,命题成立;②假设当
时,命题成立,即有
则当
时,由归纳假设及
,
得
第三问
.………………………2分
因为函数在区间
上单调递增,所以当
时,
最大为
,即
解:(1)依题意,有,
,………………4分
(2)证明:①当时,可求得
,命题成立;
……………2分
②假设当时,命题成立,即有
,……………………1分
则当时,由归纳假设及
,
得.
即
解得(
不合题意,舍去)
即当时,命题成立. …………………………………………4分
综上所述,对所有,
. ……………………………1分
(3)
.………………………2分
因为函数在区间
上单调递增,所以当
时,
最大为
,即
.……………2分
由题意,有.
所以,
查看习题详情和答案>>
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
当时
单调递减;当
时
单调递增,故当
时,
取最小值
于是对一切恒成立,当且仅当
. ①
令则
当时,
单调递增;当
时,
单调递减.
故当时,
取最大值
.因此,当且仅当
时,①式成立.
综上所述,的取值集合为
.
(Ⅱ)由题意知,令
则
令,则
.当
时,
单调递减;当
时,
单调递增.故当
,
即
从而,
又
所以因为函数
在区间
上的图像是连续不断的一条曲线,所以存在
使
即
成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值
对一切x∈R,f(x)
1恒成立转化为
从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
查看习题详情和答案>>
设函数
(1)当时,求曲线
处的切线方程;
(2)当时,求
的极大值和极小值;
(3)若函数在区间
上是增函数,求实数
的取值范围.
【解析】(1)中,先利用,表示出点
的斜率值
这样可以得到切线方程。(2)中,当
,再令
,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了
在区间
导数恒大于等于零,分离参数求解范围的思想。
解:(1)当……2分
∴
即为所求切线方程。………………4分
(2)当
令………………6分
∴递减,在(3,+
)递增
∴的极大值为
…………8分
(3)
①若上单调递增。∴满足要求。…10分
②若
∵恒成立,
恒成立,即a>0……………11分
时,不合题意。综上所述,实数
的取值范围是
查看习题详情和答案>>