摘要:依题意.是方程的两个根.且.

网址:http://m.1010jiajiao.com/timu_id_497352[举报]

 

1.(1)因为,所以

      又是圆O的直径,所以

      又因为(弦切角等于同弧所对圆周角)

      所以所以

      又因为,所以相似

      所以,即

  (2)因为,所以

       因为,所以

       由(1)知:。所以

       所以,即圆的直径

       又因为,即

     解得

2.依题设有:

 令,则

 

 

3.将极坐标系内的问题转化为直角坐标系内的问题

  点的直角坐标分别为

  故是以为斜边的等腰直角三角形,

  进而易知圆心为,半径为,圆的直角坐标方程为

      ,即

  将代入上述方程,得

  ,即

4.假设,因为,所以

又由,则

所以,这与题设矛盾

又若,这与矛盾

综上可知,必有成立

同理可证也成立

命题成立

5. 解:由a1=S1,k=.下面用数学归纳法进行证明.

1°.当n=1时,命题显然成立;

2°.假设当n=k(kN*)时,命题成立,

即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),

则n=k+1时,1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)

=( k+1)(k+1+1)(k+1+2)(k+1+3)

即命题对n=k+1.成立

由1°, 2°,命题对任意的正整数n成立.

6.(1)因为

      ,所以

       故事件A与B不独立。

   (2)因为

      

       所以

 

 

 

 

 

 

 

 

 

 

 

 

函数概念的发展历程

  17世纪,科学家们致力于运动的研究,如计算天体的位置,远距离航海中对经度和纬度的测量,炮弹的速度对于高度和射程的影响等.诸如此类的问题都需要探究两个变量之间的关系,并根据这种关系对事物的变化规律作出判断,如根据炮弹的速度推测它能达到的高度和射程.这正是函数产生和发展的背景.

  “function”一词最初由德国数学家莱布尼兹(G.W.Leibniz,1646~1716)在1692年使用.在中国,清代数学家李善兰(1811~1882)在1859年和英国传教士伟烈亚力合译的《代徽积拾级》中首次将“function”译做“函数”.

  莱布尼兹用“函数”表示随曲线的变化而改变的几何量,如坐标、切线等.1718年,他的学生,瑞士数学家约翰·伯努利(J.Bernoulli,1667~1748)强调函数要用公式表示.后来,数学家认为这不是判断函数的标准.只要一些变量变化,另一些变量随之变化就可以了.所以,1755年,瑞士数学家欧拉(L.Euler,1707~1783)将函数定义为“如果某些变量,以一种方式依赖于另一些变量,我们将前面的变量称为后面变量的函数”.

  当时很多数学家对于不用公式表示函数很不习惯,甚至抱怀疑态度.函数的概念仍然是比较模糊的.

  随着对微积分研究的深入,18世纪末19世纪初,人们对函数的认识向前推进了.德国数学家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数”.这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y和它对应就行了,不管这个法则是公式、图象、表格还是其他形式.19世纪70年代以后,随着集合概念的出现,函数概念又进而用更加严谨的集合和对应语言表述,这就是本节学习的函数概念.

  综上所述可知,函数概念的发展与生产、生活以及科学技术的实际需要紧密相关,而且随着研究的深入,函数概念不断得到严谨化、精确化的表达,这与我们学习函数的过程是一样的.

你能以函数概念的发展为背景,谈谈从初中到高中学习函数概念的体会吗?

1.探寻科学家发现问题的过程,对指导我们的学习有什么现实意义?

2.莱布尼兹、狄利克雷等科学家有哪些品质值得我们学习?

查看习题详情和答案>>

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网