摘要:(2)当时..由得单增区间为:,
网址:http://m.1010jiajiao.com/timu_id_497064[举报]
(12分)已知函数,
(1)当时,求
的反函数
;
(2)求关于的函数
当
时的最小值
;
(3)我们把同时满足下列两个性质的函数称为“和谐函数”:①函数在整个定义域上是单调增函数或单调减函数;②在函数的定义域内存在区间
使得函数在区间
上的值域为
.
(Ⅰ)判断(2)中
是否为“和谐函数”?若是,求出
的值或关系式;若不是,请说明理由;
(Ⅱ)若关于的函数
是“和谐函数”,求实数
的取值范围.
查看习题详情和答案>>
(12分)已知函数
,
(1)当
时,求
的反函数
;
(2)求关于
的函数
当
时的最小值
;
(3)我们把同时满足下列两个性质的函数称为“和谐函数”:
①函数在整个定义域上是单调增函数或单调减函数;②在函数的定义域内存在区间
使得函数在区间
上的值域为
.
(Ⅰ)判断(2)中
是否为“和谐函数”?若是,求出
的值或关系式;若不是,请说明理由;
(Ⅱ)若关于
的函数
是“和谐函数”,求实数
的取值范围.

(1)当



(2)求关于




(3)我们把同时满足下列两个性质的函数称为“和谐函数”:







(Ⅱ)若关于



已知函数.(
)
(1)若在区间
上单调递增,求实数
的取值范围;
(2)若在区间上,函数
的图象恒在曲线
下方,求
的取值范围.
【解析】第一问中,首先利用在区间
上单调递增,则
在区间
上恒成立,然后分离参数法得到
,进而得到范围;第二问中,在区间
上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.然后求解得到。
解:(1)在区间
上单调递增,
则在区间
上恒成立. …………3分
即,而当
时,
,故
.
…………5分
所以.
…………6分
(2)令,定义域为
.
在区间上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.
∵ …………9分
① 若,令
,得极值点
,
,
当,即
时,在(
,+∞)上有
,此时
在区间
上是增函数,并且在该区间上有
,不合题意;
当,即
时,同理可知,
在区间
上递增,
有,也不合题意;
…………11分
② 若,则有
,此时在区间
上恒有
,从而
在区间
上是减函数;
要使在此区间上恒成立,只须满足
,
由此求得的范围是
. …………13分
综合①②可知,当时,函数
的图象恒在直线
下方.
查看习题详情和答案>>