摘要:(1)当时..由得单增区间为:,
网址:http://m.1010jiajiao.com/timu_id_497062[举报]
(12分)已知函数,
(1)当时,求的反函数;
(2)求关于的函数 当时的最小值;
(3)我们把同时满足下列两个性质的函数称为“和谐函数”:①函数在整个定义域上是单调增函数或单调减函数;②在函数的定义域内存在区间使得函数在区间上的值域为.
(Ⅰ)判断(2)中是否为“和谐函数”?若是,求出的值或关系式;若不是,请说明理由;
(Ⅱ)若关于的函数是“和谐函数”,求实数的取值范围.
查看习题详情和答案>>
(12分)已知函数,
(1)当时,求的反函数;
(2)求关于的函数当时的最小值;
(3)我们把同时满足下列两个性质的函数称为“和谐函数”:①函数在整个定义域上是单调增函数或单调减函数;②在函数的定义域内存在区间使得函数在区间上的值域为.
(Ⅰ)判断(2)中是否为“和谐函数”?若是,求出的值或关系式;若不是,请说明理由;
(Ⅱ)若关于的函数是“和谐函数”,求实数的取值范围.
(1)当时,求的反函数;
(2)求关于的函数当时的最小值;
(3)我们把同时满足下列两个性质的函数称为“和谐函数”:①函数在整个定义域上是单调增函数或单调减函数;②在函数的定义域内存在区间使得函数在区间上的值域为.
(Ⅰ)判断(2)中是否为“和谐函数”?若是,求出的值或关系式;若不是,请说明理由;
(Ⅱ)若关于的函数是“和谐函数”,求实数的取值范围.
已知函数.()
(1)若在区间上单调递增,求实数的取值范围;
(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.
【解析】第一问中,首先利用在区间上单调递增,则在区间上恒成立,然后分离参数法得到,进而得到范围;第二问中,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.然后求解得到。
解:(1)在区间上单调递增,
则在区间上恒成立. …………3分
即,而当时,,故. …………5分
所以. …………6分
(2)令,定义域为.
在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.
∵ …………9分
① 若,令,得极值点,,
当,即时,在(,+∞)上有,此时在区间上是增函数,并且在该区间上有,不合题意;
当,即时,同理可知,在区间上递增,
有,也不合题意; …………11分
② 若,则有,此时在区间上恒有,从而在区间上是减函数;
要使在此区间上恒成立,只须满足,
由此求得的范围是. …………13分
综合①②可知,当时,函数的图象恒在直线下方.
查看习题详情和答案>>