摘要:当时..所以 又.
网址:http://m.1010jiajiao.com/timu_id_4963[举报]
已知在椭圆
中,F1(-c,0)(c>0)是椭圆的左焦点,A(a,0),B(0,b)分别是椭圆的右顶点和上顶点,点O是椭圆的中心.又点P在椭圆上,且满足条件:OP∥AB,点H是点P在x轴上的投影.
(Ⅰ)求证:当a取定值时,点H必为定点;
(Ⅱ)如图所示,当点P在第二象限,以OP为直径的圆与直线AB相切,且四边形ABPH的面积等于
,求椭圆的标准方程.
查看习题详情和答案>>
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222644977354105/SYS201311012226449773541018_ST/0.png)
(Ⅰ)求证:当a取定值时,点H必为定点;
(Ⅱ)如图所示,当点P在第二象限,以OP为直径的圆与直线AB相切,且四边形ABPH的面积等于
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222644977354105/SYS201311012226449773541018_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222644977354105/SYS201311012226449773541018_ST/images2.png)
已知m>1,直线,椭圆C:
,
、
分别为椭圆C的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B
的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[
【解析】第一问中因为直线经过点
(
,0),所以
=
,得
.又因为m>1,所以
,故直线的方程为
第二问中设,由
,消去x,得
,
则由,知
<8,且有
由题意知O为的中点.由
可知
从而
,设M是GH的中点,则M(
).
由题意可知,2|MO|<|GH|,得到范围
查看习题详情和答案>>
某地今年年初有居民住房面积为am2,其中需要拆除的旧房面积占了一半.当地有关部门决定每年以当年年初住房面积的10%的住房增长率建设新住房,同时每年拆除xm2的旧住房,又知该地区人口年增长率为4.9‰.
(1)如果10年后该地的人均住房面积正好比目前翻一番,那么每年应拆除的旧住房面积x是多少?
(2)依照(1)拆房速度,再过多少年能拆除所有需要拆除的旧住房?
下列数据供学生计算时参考:
查看习题详情和答案>>
(1)如果10年后该地的人均住房面积正好比目前翻一番,那么每年应拆除的旧住房面积x是多少?
(2)依照(1)拆房速度,再过多少年能拆除所有需要拆除的旧住房?
下列数据供学生计算时参考:
1.19=2.38 | 1.00499=1.04 |
1.110=2.6 | 1.004910=1.05 |
1.111=2.85 | 1.004911=1.06 |
某地今年年初有居民住房面积为m2,其中需要拆除的旧房面积占了一半,当地有关部门决定每年以当年年初住房面积的10%的住房增长率建设新住房,同时每年拆除xm2的旧住房,又知该地区人口年增长率为4.9‰.
(1)如果10年后该地区的人均住房面积正好比目前翻一番,那么每年应拆除的旧住房面积x是多少?
(2)依照(1)拆房速度,共需多少年能拆除所有需要拆除的旧房?
下列数据供计算时参考:
1.19=2.38 | 1.00499=1.04 |
1.110=2.6 | 1.004910=1.05 |
1.111=2.85 | 1.004911=1.06 |
某地今年年初有居民住房面积为am2,其中需要拆除的旧房面积占了一半.当地有关部门决定每年以当年年初住房面积的10%的住房增长率建设新住房,同时每年拆除xm2的旧住房,又知该地区人口年增长率为4.9‰.
(1)如果10年后该地的人均住房面积正好比目前翻一番,那么每年应拆除的旧住房面积x是多少?
(2)依照(1)拆房速度,再过多少年能拆除所有需要拆除的旧住房?
下列数据供学生计算时参考:
1.19=2.38 | 1.00499=1.04 |
1.110=2.6 | 1.004910=1.05 |
1.111=2.85 | 1.004911=1.06 |