摘要:因为为的角平分线.所以.即
网址:http://m.1010jiajiao.com/timu_id_495804[举报]
如图,在△ABC中,AB=2,AC=BC=.
(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=S△ABC;
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).
附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3=,y4=-.
所以,原方程的解是y1=1,y2=-1,y3=,y4=-.
再如x2-2=4,可设y=,用同样的方法也可求解.
查看习题详情和答案>>
如图,在△ABC中,AB=2,AC=BC=.
(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=S△ABC;
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).
附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3=,y4=-.
所以,原方程的解是y1=1,y2=-1,y3=,y4=-.
再如x2-2=4,可设y=,用同样的方法也可求解.
查看习题详情和答案>>
(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=S△ABC;
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).
附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3=,y4=-.
所以,原方程的解是y1=1,y2=-1,y3=,y4=-.
再如x2-2=4,可设y=,用同样的方法也可求解.
查看习题详情和答案>>
有这样一道题:
如图所示,已知BA∥CD,BE平分∠ABC,CE平分∠BCD,试判断∠1与∠2的度数有怎样的关系,并说明理由.小丽的判断是∠1与∠2互余,这是正确的,但是她写的说明不完整,请你给予补充.
因为BE是∠ABC的平分线,所以∠2=
(
而AB∥CD,根据两直线平行,同旁内角互补,得
查看习题详情和答案>>
如图所示,已知BA∥CD,BE平分∠ABC,CE平分∠BCD,试判断∠1与∠2的度数有怎样的关系,并说明理由.小丽的判断是∠1与∠2互余,这是正确的,但是她写的说明不完整,请你给予补充.
因为BE是∠ABC的平分线,所以∠2=
1 |
2 |
∠ABC
∠ABC
.又因为CE是∠BCD的平分线,所以∠1=1 |
2 |
∠BCD
∠BCD
,于是∠1+∠2=1 |
2 |
∠ABC
∠ABC
+∠BCD
∠BCD
).而AB∥CD,根据两直线平行,同旁内角互补,得
∠ABC
∠ABC
+∠BCD
∠BCD
=180°
180°
,所以∠1+∠2=90°,即∠1与∠2互余.有这样一道题:
如图所示,已知BA∥CD,BE平分∠ABC,CE平分∠BCD,试判断∠1与∠2的度数有怎样的关系,并说明理由.小丽的判断是∠1与∠2互余,这是正确的,但是她写的说明不完整,请你给予补充.
因为BE是∠ABC的平分线,所以∠2=
______.又因为CE是∠BCD的平分线,所以∠1=
______,于是∠1+∠2=
(______+______).
而AB∥CD,根据两直线平行,同旁内角互补,得______+______=______,所以∠1+∠2=90°,即∠1与∠2互余.
查看习题详情和答案>>
如图所示,已知BA∥CD,BE平分∠ABC,CE平分∠BCD,试判断∠1与∠2的度数有怎样的关系,并说明理由.小丽的判断是∠1与∠2互余,这是正确的,但是她写的说明不完整,请你给予补充.
因为BE是∠ABC的平分线,所以∠2=
1 |
2 |
1 |
2 |
1 |
2 |
而AB∥CD,根据两直线平行,同旁内角互补,得______+______=______,所以∠1+∠2=90°,即∠1与∠2互余.
(1)自主阅读:如图1,AD∥BC,连接AB、AC、BD、CD,则S△ABC=S△BCD.
证明:分别过点A和D,作AF⊥BC,DE⊥BC
由AD∥BC,可得AF=DE.
又因为S△ABC=×BC×AF,S△BCD=BC×DE
所以S△ABC=S△BCD
由此我们可以得到以下的结论:像图1这样,______.
(2)结论证明:如果一条直线(线段)把一个平面图形的面积分成相等的两部分,我们把这条直线(线段)称为这个平面图形的一条面积等分线(段),如,平行四变形的一条对角线就是平形四边形的一条面积等分线段.
①如图2,梯形ABCD中AB∥DC,连接AC,过点B作BE∥AC,交DC延长线于点E,连接点A和DE的中点P,则AP即为梯形ABCD的面积等分线段,请你写出这个结论成立的理由:
②如图3,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否做出四边形ABCD的面积等分线(段)?若能,请画出面积等分线(用钢笔或圆珠笔画图,不用写作法),不要证明
查看习题详情和答案>>
证明:分别过点A和D,作AF⊥BC,DE⊥BC
由AD∥BC,可得AF=DE.
又因为S△ABC=×BC×AF,S△BCD=BC×DE
所以S△ABC=S△BCD
由此我们可以得到以下的结论:像图1这样,______.
(2)结论证明:如果一条直线(线段)把一个平面图形的面积分成相等的两部分,我们把这条直线(线段)称为这个平面图形的一条面积等分线(段),如,平行四变形的一条对角线就是平形四边形的一条面积等分线段.
①如图2,梯形ABCD中AB∥DC,连接AC,过点B作BE∥AC,交DC延长线于点E,连接点A和DE的中点P,则AP即为梯形ABCD的面积等分线段,请你写出这个结论成立的理由:
②如图3,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否做出四边形ABCD的面积等分线(段)?若能,请画出面积等分线(用钢笔或圆珠笔画图,不用写作法),不要证明
查看习题详情和答案>>