摘要:例4有两个完全相同的小滑块A和B.A沿光滑水平面以速度v0与静止在平面边缘O点的B发生正碰.碰撞中无机械能损失.碰后B运动的轨迹为OD曲线.如图所示.(1)已知滑块质量为m,碰撞时间为.求碰撞过程中A对B平均冲力的大小.(2)为了研究物体从光滑抛物线轨道顶端无初速下滑的运动.特制做一个与B平抛轨道完全相同的光滑轨道.并将该轨道固定在与OD曲线重合的位置.让A沿该轨道无初速下滑(经分析.A下滑过程中不会脱离轨道).a.分析A沿轨道下滑到任意一点的动量pA与B平抛经过该点的动量pB的大小关系;b.在OD曲线上有一M点.O和M两点连线与竖直方向的夹角为45°.求A通过M点时的水平分速度和竖直分速度.解析:(1)滑动A与B正碰.满足:mvA-mvB=mv0

网址:http://m.1010jiajiao.com/timu_id_487690[举报]

1.B 2.A 3.B   4. B   5.C   6.B   7.D  8.ABD .ABC   10.D

11.  丙   错误操作是先放开纸带后接通电源。

(1)左;(2)

(3)    

(4) ΔEP>ΔEK这是因为实验中有阻力。

(5)在实验误差允许围内,机械能守恒

12.(1)用天平分别测出滑块A、B的质量

   (2)

   (3)

由能量守恒知

13.解:(1)设小球摆回到最低点的速度为v,绳的拉力为T,从F开始作用到小球返回到最低点的过程中,运用动能定理有,在最低点根据牛顿第二定律有

(2)设小球摆到的最高点与最低点相差高度为H,对全过程运用动能定理有

14.解:(1)汽车以正常情况下的最高速度行驶时 的功率是额定功率

这时汽车做的匀速运动,牵引力和阻力大小相等,即F=F

设阻力是重力的k倍,F=kmg

代入数据得k=0.12

(2)设汽车以额定功率行驶速度为时的牵引力为,则,

而阻力大小仍为代入数据可得a=1.2

   15.解:(1)设物体A、B相对于车停止滑动时,车速为v,根据动量守恒定律

方向向右

(2)设物体A、B在车上相对于车滑动的距离分别为,车长为L,由功能关系

可知L至少为6.8m

     16.解:设A、B系统滑到圆轨道最低点时锁定为,解除弹簧锁定后A、B的速度分别为,B到轨道最高点的速度为V,则有

解得:

17.解:炮弹上升到达最高点的高度为H,根据匀变速直线运动规律,有  v02=2gH     

设质量为m的弹片刚爆炸后的速度为V,另一块的速度为v,根据动量守恒定律,

mV=(M-mv    

设质量为m的弹片运动的时间为t,根据平抛运动规律,有 H=gt2      R=Vt     

炮弹刚爆炸后,由能量守恒定律可得:两弹片的总动能Ek=mV2+Mmv2     

解以上各式得  Ek==6.0×104 J   

 

 

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网