摘要:理解圆周运动的规律 (1)两种模型:凡是直接用皮带传动(包括链条传动.摩擦传动)的两个轮子.两轮边缘上各点的线速度大小相等,凡是同一个轮轴上(各个轮都绕同一根轴同步转动)的各点角速度相等.

网址:http://m.1010jiajiao.com/timu_id_487412[举报]

 

一、选择题

1、根据图象分析:若沿x轴作匀速运动,通过图1分析可知,y方向先减速后加速;若沿y轴方向作匀速运动,通过图2分析可知,x方向先加速后减速。

答案:B

2、乙船能到达A点,则vcos600=u,

过河时间t满足:t = H/( vsin600), 甲、乙两船沿垂直于河岸方向的分速度相同,故过河时间相同。在t时间内甲船沿河岸方向的位移为s= (vcos600 + u )t=

答案:D

3、根据万有引力定律:,得:T=

答案:A

4、质点在A、B、C、D四点离开轨道,分别做下抛、平抛、上抛、平抛运动。很明显,在A点离开轨道比在C、D两点离开轨道在空间时间短。通过计算在A点下抛落地时间为tA=(6-4)s,在B点平抛落地时间tB=4s,显然,在A点离开轨道后在空中时间最短。根据机械能守恒,在D刚抛出时机械能最大,所以落地时速度最大。

答案:AD

5、在轨道上向其运行方向弹射一个物体,由于质量远小于空间站的质量,空间站仍沿原方向运动。根据动量守恒,弹出后一瞬间,空间站沿原运行方向的速度变小,提供的向心力(万有引力)大于需要的向心力,轨道半径减小,高度降低,在较低的轨道上运行速率变大,周期变小。

答案:C

6、当悬线在竖直状态与钉相碰时根据能量守恒可知,小球速度不变;但圆周运动的半径减小,需要的向心力变大,向心加速度变大,绳子上的拉力变大。

答案:BD

7、根据万有引力定律:可得:M=,可求出恒星质量与太阳质量之比,根据可得:v=,可求出行星运行速度与地球公转速度之比。

答案:AD

8、卫星仍围绕地球运行,所以发射速度小11.2km/s;最大环绕速度为7.9km/s,所以在轨道Ⅱ上的速度小于7.9km/s;根据机械能守恒可知:卫星在P点的速度大于在Q点的速度;卫星在轨道Ⅰ的Q点是提供的向心力大于需要的向心力,在轨道Ⅱ上Q点是提供的向心力等于需要的向心力,所以在Q点从轨道Ⅰ进入轨道Ⅱ必须增大速度。

答案:CD

9、同步卫星随地球自转的方向是从东向西,把同步卫星从赤道上空3.6万千米、东经103°处,调整到104°处,相对于地球沿前进方向移动位置,需要增大相对速度,所以应先下降高度增大速度到某一位置再上升到原来的高度。

答案:A

10、开始转动时向心力由静摩擦力提供,但根据F=mrω2可知,B需要的向心力是A的两倍。所以随着转速增大,B的摩擦力首先达到最大静摩擦力。继续增大转速,绳子的张力增大,B的向心力由最大静摩擦力提供,A的向心力由静摩擦力和绳子的张力的合力提供,随着转速的增大,B需要的向心力的增量(绳子张力的增量)比A需要的向心力的增量大,因而A指向圆心的摩擦力逐渐减小直到为0然后反向增大到最大静摩擦力。所以,B受到的静摩擦力先增大,后保持不变;A受到的静摩擦力是先减小后增大;A受到的合外力就是向心力一直在增大。

答案:BD

 

二、填空题

11、圆盘转动时,角速度的表达式为ω= ,  T为电磁打点计的时器打点的时间间隔,r为圆盘的半径,x2、x1是纸带上选定的两点分别对应米尺上的刻度值,n为选定的两点间的打点数(含两点)。地纸带上选取两点(间隔尽可能大些)代入上式可求得ω= 6.8rad/s。

12、 (1)斜槽末端切线方向保持水平;从同一高度。

(2)设时间间隔为t, x = v0t,   y2-y1=gt2 ,解得: v0=.将x=20.00cmy1 =4.70cm y2 =14.50cm代入求得v0=2m/s

 

三、计算题

13.解:⑴在行星表面,质量为m的物体的重力近似等于其受到的万有引力,则

                          

g=                               

得:   

⑵行星表面的环绕速度即为第一宇宙速度,做匀速圆周运动的向心力是万有引力提供的,则

                         

v1=                    

得: 

14解析:用r表示飞船圆轨道半径,有r =R +H=6.71×l06 m

由万有引力定律和牛顿定律,得 , 式中M表示地球质量,m表示飞船质量,T表示飞船绕地球运行的周期,G表示万有引力常量.

利用及上式, 得 ,代入数值解得T=5.28×103s,

出舱活动时间t=25min23s=1523s, 航天员绕行地球角度 =1040

 

15.解:(1)这位同学对过程的分析错误,物块先沿着圆柱面加速下滑,然后离开圆柱面做斜下抛运动,离开圆柱面时的速率不等于。                   

(2)a、设物块离开圆柱面时的速率为,

                     

        

解得:                      

(2)b、由:  得:

落地时的速率为                       

16.解:对子弹和木块应用动量守恒定律:

                              

      所以                                  

对子弹、木块由水平轨道到最高点应用机械能守恒定律,

取水平面为零势能面:有

          

   所以                        

由平抛运动规律有:                          

                            

解得:                   

所以,当R = 0.2m时水平距离最大                

最大值Smax = 0.8m

 

17.解:(1)

 

(2)设人在B1位置刚好看见卫星出现在A1位置,最后

在B2位置看到卫星从A2位置消失,

    OA1=2OB1

  ∠A1OB1=∠A2OB2=π/3

从B1到B2时间为t

则有   

18.解: (1)设 A、B的圆轨道半径分别为,由题意知,A、B做匀速圆周运动的角速 度相同,设其为。由牛顿运动定律,有

设 A、B之间的距离为,又,由上述各式得

,                               ①

由万有引力定律,有

                           

将①代入得

                           

                           

比较可得

                                                   ②

(2)由牛顿第二定律,有

                                                   ③

又可见星 A的轨道半径

                                                                ④

由②③④式解得

                                               ⑤

(3)将代入⑤式,得

                           

代入数据得

                                            ⑥

,将其代入⑥式得

                                    ⑦

可见,的值随 n的增大而增大,试令,得

                                           ⑧

若使⑦式成立,则 n 必大于 2,即暗星 B 的质量必大于,由此得出结

论:暗星有可能是黑洞。

 

 

 

第六部分 振动和波

第一讲 基本知识介绍

《振动和波》的竞赛考纲和高考要求有很大的不同,必须做一些相对详细的补充。

一、简谐运动

1、简谐运动定义:= -k             

凡是所受合力和位移满足①式的质点,均可称之为谐振子,如弹簧振子、小角度单摆等。

谐振子的加速度:= -

2、简谐运动的方程

回避高等数学工具,我们可以将简谐运动看成匀速圆周运动在某一条直线上的投影运动(以下均看在x方向的投影),圆周运动的半径即为简谐运动的振幅A 。

依据:x = -mω2Acosθ= -mω2

对于一个给定的匀速圆周运动,m、ω是恒定不变的,可以令:

2 = k 

这样,以上两式就符合了简谐运动的定义式①。所以,x方向的位移、速度、加速度就是简谐运动的相关规律。从图1不难得出——

位移方程: = Acos(ωt + φ)                                        ②

速度方程: = -ωAsin(ωt +φ)                                     ③

加速度方程:= -ω2A cos(ωt +φ)                                   ④

相关名词:(ωt +φ)称相位,φ称初相。

运动学参量的相互关系:= -ω2

A = 

tgφ= -

3、简谐运动的合成

a、同方向、同频率振动合成。两个振动x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振动x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得

A =  ,φ= arctg 

显然,当φ2-φ1 = 2kπ时(k = 0,±1,±2,…),合振幅A最大,当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),合振幅最小。

b、方向垂直、同频率振动合成。当质点同时参与两个垂直的振动x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)时,这两个振动方程事实上已经构成了质点在二维空间运动的轨迹参数方程,消去参数t后,得一般形式的轨迹方程为

+-2cos(φ2-φ1) = sin22-φ1)

显然,当φ2-φ1 = 2kπ时(k = 0,±1,±2,…),有y = x ,轨迹为直线,合运动仍为简谐运动;

当φ2-φ1 = (2k + 1)π时(k = 0,±1,±2,…),有+= 1 ,轨迹为椭圆,合运动不再是简谐运动;

当φ2-φ1取其它值,轨迹将更为复杂,称“李萨如图形”,不是简谐运动。

c、同方向、同振幅、频率相近的振动合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合运动x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合运动是振动,但不是简谐运动,称为角频率为的“拍”现象。

4、简谐运动的周期

由②式得:ω=  ,而圆周运动的角速度和简谐运动的角频率是一致的,所以

T = 2π                                                      

5、简谐运动的能量

一个做简谐运动的振子的能量由动能和势能构成,即

mv2 + kx2 = kA2

注意:振子的势能是由(回复力系数)k和(相对平衡位置位移)x决定的一个抽象的概念,而不是具体地指重力势能或弹性势能。当我们计量了振子的抽象势能后,其它的具体势能不能再做重复计量。

6、阻尼振动、受迫振动和共振

和高考要求基本相同。

二、机械波

1、波的产生和传播

产生的过程和条件;传播的性质,相关参量(决定参量的物理因素)

2、机械波的描述

a、波动图象。和振动图象的联系

b、波动方程

如果一列简谐波沿x方向传播,振源的振动方程为y = Acos(ωt + φ),波的传播速度为v ,那么在离振源x处一个振动质点的振动方程便是

y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕

这个方程展示的是一个复变函数。对任意一个时刻t ,都有一个y(x)的正弦函数,在x-y坐标下可以描绘出一个瞬时波形。所以,称y = Acos〔ω(t - )+ φ〕为波动方程。

3、波的干涉

a、波的叠加。几列波在同一介质种传播时,能独立的维持它们的各自形态传播,在相遇的区域则遵从矢量叠加(包括位移、速度和加速度的叠加)。

b、波的干涉。两列波频率相同、相位差恒定时,在同一介质中的叠加将形成一种特殊形态:振动加强的区域和振动削弱的区域稳定分布且彼此隔开。

我们可以用波程差的方法来讨论干涉的定量规律。如图2所示,我们用S1和S2表示两个波源,P表示空间任意一点。

当振源的振动方向相同时,令振源S1的振动方程为y1 = A1cosωt ,振源S1的振动方程为y2 = A2cosωt ,则在空间P点(距S1为r1 ,距S2为r2),两振源引起的分振动分别是

y1′= A1cos〔ω(t ? )〕

y2′= A2cos〔ω(t ? )〕

P点便出现两个频率相同、初相不同的振动叠加问题(φ1 =  ,φ2 = ),且初相差Δφ= (r2 – r1)。根据前面已经做过的讨论,有

r2 ? r1 = kλ时(k = 0,±1,±2,…),P点振动加强,振幅为A1 + A2 

r2 ? r1 =(2k ? 1)时(k = 0,±1,±2,…),P点振动削弱,振幅为│A1-A2│。

4、波的反射、折射和衍射

知识点和高考要求相同。

5、多普勒效应

当波源或者接受者相对与波的传播介质运动时,接收者会发现波的频率发生变化。多普勒效应的定量讨论可以分为以下三种情况(在讨论中注意:波源的发波频率f和波相对介质的传播速度v是恒定不变的)——

a、只有接收者相对介质运动(如图3所示)

设接收者以速度v1正对静止的波源运动。

如果接收者静止在A点,他单位时间接收的波的个数为f ,

当他迎着波源运动时,设其在单位时间到达B点,则= v1 ,、

在从A运动到B的过程中,接收者事实上“提前”多接收到了n个波

n = 

显然,在单位时间内,接收者接收到的总的波的数目为:f + n = f ,这就是接收者发现的频率f。即

f

显然,如果v1背离波源运动,只要将上式中的v1代入负值即可。如果v1的方向不是正对S ,只要将v1出正对的分量即可。

b、只有波源相对介质运动(如图4所示)

设波源以速度v2正对静止的接收者运动。

如果波源S不动,在单位时间内,接收者在A点应接收f个波,故S到A的距离:= fλ 

在单位时间内,S运动至S′,即= v2 。由于波源的运动,事实造成了S到A的f个波被压缩在了S′到A的空间里,波长将变短,新的波长

λ′= 

而每个波在介质中的传播速度仍为v ,故“被压缩”的波(A接收到的波)的频率变为

f2 = 

当v2背离接收者,或有一定夹角的讨论,类似a情形。

c、当接收者和波源均相对传播介质运动

当接收者正对波源以速度v1(相对介质速度)运动,波源也正对接收者以速度v2(相对介质速度)运动,我们的讨论可以在b情形的过程上延续…

f3 =  f2 = 

关于速度方向改变的问题,讨论类似a情形。

6、声波

a、乐音和噪音

b、声音的三要素:音调、响度和音品

c、声音的共鸣

第二讲 重要模型与专题

一、简谐运动的证明与周期计算

物理情形:如图5所示,将一粗细均匀、两边开口的U型管固定,其中装有一定量的水银,汞柱总长为L 。当水银受到一个初始的扰动后,开始在管中振动。忽略管壁对汞的阻力,试证明汞柱做简谐运动,并求其周期。

模型分析:对简谐运动的证明,只要以汞柱为对象,看它的回复力与位移关系是否满足定义式①,值得注意的是,回复力系指振动方向上的合力(而非整体合力)。当简谐运动被证明后,回复力系数k就有了,求周期就是顺理成章的事。

本题中,可设汞柱两端偏离平衡位置的瞬时位移为x 、水银密度为ρ、U型管横截面积为S ,则次瞬时的回复力

ΣF = ρg2xS = x

由于L、m为固定值,可令: = k ,而且ΣF与x的方向相反,故汞柱做简谐运动。

周期T = 2π= 2π

答:汞柱的周期为2π 。

学生活动:如图6所示,两个相同的柱形滚轮平行、登高、水平放置,绕各自的轴线等角速、反方向地转动,在滚轮上覆盖一块均质的木板。已知两滚轮轴线的距离为L 、滚轮与木板之间的动摩擦因素为μ、木板的质量为m ,且木板放置时,重心不在两滚轮的正中央。试证明木板做简谐运动,并求木板运动的周期。

思路提示:找平衡位置(木板重心在两滚轮中央处)→ú力矩平衡和Σ?F6= 0结合求两处弹力→ú求摩擦力合力…

答案:木板运动周期为2π 。

巩固应用:如图7所示,三根长度均为L = 2.00m地质量均匀直杆,构成一正三角形框架ABC,C点悬挂在一光滑水平轴上,整个框架可绕转轴转动。杆AB是一导轨,一电动松鼠可在导轨上运动。现观察到松鼠正在导轨上运动,而框架却静止不动,试讨论松鼠的运动是一种什么样的运动。

解说:由于框架静止不动,松鼠在竖直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。设松鼠的质量为m ,即:

N = mg                            ①

再回到框架,其静止平衡必满足框架所受合力矩为零。以C点为转轴,形成力矩的只有松鼠的压力N、和松鼠可能加速的静摩擦力f ,它们合力矩为零,即:

MN = Mf

现考查松鼠在框架上的某个一般位置(如图7,设它在导轨方向上距C点为x),上式即成:

N·x = f·Lsin60°                 ②

解①②两式可得:f = x ,且f的方向水平向左。

根据牛顿第三定律,这个力就是松鼠在导轨方向上的合力。如果我们以C在导轨上的投影点为参考点,x就是松鼠的瞬时位移。再考虑到合力与位移的方向因素,松鼠的合力与位移满足关系——

= -k

其中k =  ,对于这个系统而言,k是固定不变的。

显然这就是简谐运动的定义式。

答案:松鼠做简谐运动。

评说:这是第十三届物理奥赛预赛试题,问法比较模糊。如果理解为定性求解,以上答案已经足够。但考虑到原题中还是有定量的条件,所以做进一步的定量运算也是有必要的。譬如,我们可以求出松鼠的运动周期为:T = 2π = 2π = 2.64s 。

二、典型的简谐运动

1、弹簧振子

物理情形:如图8所示,用弹性系数为k的轻质弹簧连着一个质量为m的小球,置于倾角为θ

查看习题详情和答案>>

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网