网址:http://m.1010jiajiao.com/timu_id_481222[举报]
一、选择题(每小题5分,共计60分)
ABADD CACAC AB
二、填空题(每小题4分,共计16分)
(13)4;(14);(15);(16)①④.
三、解答题:
17.解:(本小题满分12分)
(Ⅰ) 由题意
由题意,函数周期为3,又>0,;
(Ⅱ) 由(Ⅰ)知
又x,的减区间是.
(18) (本小题满分12分)
解:(1)随机变量的所有可能取值为
所以随机变量的分布列为
0
1
2
3
4
5
(2)∵随机变量
∴
19. (本小题满分12分)
解:(Ⅰ)∵ 底面ABCD是正方形,
∴AB⊥BC,
又平面PBC⊥底面ABCD
平面PBC ∩ 平面ABCD=BC
∴AB ⊥平面PBC
又PC平面PBC
∴AB ⊥CP ………………3分
(Ⅱ)解法一:体积法.由题意,面面,
取中点,则
面.
再取中点,则 ………………5分
设点到平面的距离为,则由
. ………………7分
解法二:面
取中点,再取中点
,
过点作,则
在中,
由
∴点到平面的距离为。 ………………7分
解法三:向量法(略)
(Ⅲ)
面
就是二面角的平面角.
∴二面角的大小为45°. ………………12分
方法二:向量法(略).
(20)(本小题满分12分)
解:(Ⅰ)方法一:∵,
∴.
设直线,
并设l与g(x)=x2相切于点M()
∵ ∴2
∴
代入直线l方程解得p=1或p=3.
方法二:
将直线方程l代入 得
∴
解得p=1或p=3 .
(Ⅱ)∵,
①要使为单调增函数,须在恒成立,
即在恒成立,即在恒成立,
又,所以当时,在为单调增函数; …………6分
②要使为单调减函数,须在恒成立,
即在恒成立,即在恒成立,
又,所以当时,在为单调减函数.
综上,若在为单调函数,则的取值范围为或.………8分
(21) (本小题满分12分)
(1)∵直线的方向向量为
∴直线的斜率为,又∵直线过点
∴直线的方程为
∵,∴椭圆的焦点为直线与轴的交点
∴椭圆的焦点为
∴,又∵
∴ ,∴
∴椭圆方程为
(2)设直线MN的方程为
由,得
设坐标分别为
则 (1) (2)
>0
∴,
∵,显然,且
∴
∴
代入(1) (2),得
∵,得
,即
解得且.
(22) (本小题满分14分)
(1) 解:过的直线方程为
联立方程消去得
∴
即
(2)
∴是等比数列
,;
(III)由(II)知,,要使恒成立由=>0恒成立,
即(-1)nλ>-()n-1恒成立.
?。当n为奇数时,即λ<()n-1恒成立.
又()n-1的最小值为1.∴λ<1. 10分
?。当n为偶数时,即λ>-()n-1恒成立,
又-()n-1的最大值为-,∴λ>-. 11分
即-<λ<1,又λ≠0,λ为整数,
∴λ=-1,使得对任意n∈N*,都有.