摘要:. --8分要使得bn-λSn>0对任意n∈N*都成立.
网址:http://m.1010jiajiao.com/timu_id_472813[举报]
设{an},{bn}都是各项为正数的数列,对任意的正整数n,都有an,bn2,an+1成等差数列,bn2,an+1,bn+12成等比数列.
(1)证明数列{bn}是等差数列;
(2)如果a1=1,b1=2,记数列{
}的前n项和为Sn,问是否存在常数λ,使得bn>λSn对任意n∈N*都成立?若存在,求出λ的取值范围;若不存在,请说明理由.
查看习题详情和答案>>
(1)证明数列{bn}是等差数列;
(2)如果a1=1,b1=2,记数列{
1 | an |
已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+bn=0(n∈N*)的两实根,且a1=1.
(1)求证:数列{an-
×2n}是等比数列;
(2)设Sn是数列{an}的前n项和,求Sn;
(3)问是否存在常数λ,使得bn>λSn对?n∈N*都成立,若存在,求出λ的取值范围,若不存在,请说明理由. 查看习题详情和答案>>
(1)求证:数列{an-
1 | 3 |
(2)设Sn是数列{an}的前n项和,求Sn;
(3)问是否存在常数λ,使得bn>λSn对?n∈N*都成立,若存在,求出λ的取值范围,若不存在,请说明理由. 查看习题详情和答案>>
(2013•惠州一模)已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+bn=0(n∈N*)的两实根,且a1=1.
(Ⅰ)求证:数列{an-
×2n}是等比数列;
(Ⅱ)Sn是数列{an}的前n项的和.问是否存在常数λ,使得bn>λSn对?n∈N*都成立,若存在,求出λ的取值范围,若不存在,请说明理由.
查看习题详情和答案>>
(Ⅰ)求证:数列{an-
1 | 3 |
(Ⅱ)Sn是数列{an}的前n项的和.问是否存在常数λ,使得bn>λSn对?n∈N*都成立,若存在,求出λ的取值范围,若不存在,请说明理由.