摘要:集合.若.则的取值范围是 .分析:题目中的两个集合可以看作是平面上的两个区域.题目要解决的是这两个区域有公共点的问题.可以借助于数形结合的方法去探究问题的答案.
网址:http://m.1010jiajiao.com/timu_id_454356[举报]
(本小题满分14分)
函数
定义在区间[a, b]上,设“
”表示函数
在集合D上的最小值,“
”表示函数
在集合D上的最大值.现设
,
,
若存在最小正整数k,使得
对任意的
成立,则称函数
为区间
上的“第k类压缩函数”.
![]()
(Ⅰ) 若函数
,求
的最大值,写出
的解析式;
(Ⅱ) 若
,函数
是
上的“第3类压缩函数”,求m的取值范围.
查看习题详情和答案>>
(本小题满分14分)
函数
定义在区间[a, b]上,设“
”表示函数
在集合D上的最小值,“
”表示函数
在集合D上的最大值.现设
,
,
若存在最小正整数k,使得
对任意的
成立,则称函数
为区间
上的“第k类压缩函数”.
(Ⅰ) 若函数
,求
的最大值,写出
的解析式;
(Ⅱ) 若
,函数
是
上的“第3类压缩函数”,求m的取值范围.
ks**5u
查看习题详情和答案>>