摘要:10.数列{an}的前n项和Sn=n2+1.数列{bn}满足:b1=1.当n≥2时.bn=abn-1.设数列{bn}的前n项和为Tn.则T2007= . 答案:22006+2006 解析:由题意得a1=2.当n≥2时.an=Sn-Sn-1=(n2+1)-[(n-1)2+1]=2n-1.由此可得.an≥2.当n≥2时.bn=abn-1≥2.b2=ab1=a1=2.当n≥2时bn=abn-1≥2.当n≥3时.bn-1≥2.bn=abn-1=2bn-1-1.bn-1=2(bn-1-1).bn-1=2n-2(b2-1)=2n-2.bn=2n-2+1(n≥2).因此T2007=1+2+(2+1)+(22+1)+-+(22005+1)=(1+2+22+-+22005)+2007=+2007=22006+2006.

网址:http://m.1010jiajiao.com/timu_id_4462653[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网