摘要:114.在用圆锥曲线与直线联立求解时.消元后得到的方程中要注意:二次项的系数是否为零?判别式的限制.(求交点.弦长.中点.斜率.对称.存在性问题都在下进行).
网址:http://m.1010jiajiao.com/timu_id_4419592[举报]
在等差数列
中,
,
,其中
是数列
的前
项之和,曲线
的方程是
,直线
的方程是
.
求数列
的通项公式;
当直线
与曲线
相交于不同的两点
,
时,令
,
求
的最小值;
对于直线
和直线外的一点P,用“
上的点与点P距离的最小值”定义点P到直线
的距离与原有的点到直线距离的概念是等价的,若曲线
与直线
不相交,试以类似的方式给出一条曲线
与直线
间“距离”的定义,并依照给出的定义,在
中自行选定一个椭圆,求出该椭圆与直线
的“距离”.
已知函数f(x)=ln(ex+1)-ax(a∈R).
①若曲线y=f(x)在x=0处与直线x+y=b相切,求a,b的值;
②设x∈[-ln2,0]时,f(x)在x=0处取得最大值,求实数a的取值范围. 查看习题详情和答案>>
①若曲线y=f(x)在x=0处与直线x+y=b相切,求a,b的值;
②设x∈[-ln2,0]时,f(x)在x=0处取得最大值,求实数a的取值范围. 查看习题详情和答案>>