摘要:解析:∵Sn=7.∴{an}是一个无穷递缩等比数列.0<q<1.
网址:http://m.1010jiajiao.com/timu_id_422444[举报]
设数列{an}是一个无穷数列,记Tn=
2i-1ai+2a1-a3-2n+2an+1,n∈N*.
(1)若{an}是等差数列,证明:对于任意的n∈N*,Tn=0;
(2)对任意的n∈N*,若Tn=0,证明:an是等差数列;
(3)若Tn=0,且a1=0,a2=1,数列bn满足bn=2an,由bn构成一个新数列3,b2,b3,…,设这个新数列的前n项和为Sn,若Sn可以写成ab,(a,b∈N,a>1,b>1),则称Sn为“好和”.问S1,S2,S3,…,中是否存在“好和”,若存在,求出所有“好和”;若不存在,说明理由. 查看习题详情和答案>>
n+2 | i=1 |
(1)若{an}是等差数列,证明:对于任意的n∈N*,Tn=0;
(2)对任意的n∈N*,若Tn=0,证明:an是等差数列;
(3)若Tn=0,且a1=0,a2=1,数列bn满足bn=2an,由bn构成一个新数列3,b2,b3,…,设这个新数列的前n项和为Sn,若Sn可以写成ab,(a,b∈N,a>1,b>1),则称Sn为“好和”.问S1,S2,S3,…,中是否存在“好和”,若存在,求出所有“好和”;若不存在,说明理由. 查看习题详情和答案>>