网址:http://m.1010jiajiao.com/timu_id_418161[举报]
已知函数的图象过坐标原点O,且在点
处的切线的斜率是
.
(Ⅰ)求实数的值;
(Ⅱ)求在区间
上的最大值;
(Ⅲ)对任意给定的正实数,曲线
上是否存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上?说明理由.
【解析】第一问当时,
,则
。
依题意得:,即
解得
第二问当时,
,令
得
,结合导数和函数之间的关系得到单调性的判定,得到极值和最值
第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设,则
,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
(Ⅰ)当时,
,则
。
依题意得:,即
解得
(Ⅱ)由(Ⅰ)知,
①当时,
,令
得
当变化时,
的变化情况如下表:
|
|
0 |
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
极小值 |
单调递增 |
极大值 |
|
又,
,
。∴
在
上的最大值为2.
②当时,
.当
时,
,
最大值为0;
当时,
在
上单调递增。∴
在
最大值为
。
综上,当时,即
时,
在区间
上的最大值为2;
当时,即
时,
在区间
上的最大值为
。
(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设,则
,显然
∵是以O为直角顶点的直角三角形,∴
即 (*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若,则
代入(*)式得:
即,而此方程无解,因此
。此时
,
代入(*)式得: 即
(**)
令
,则
∴在
上单调递增, ∵
∴
,∴
的取值范围是
。
∴对于,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数,曲线
上存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上
查看习题详情和答案>>
2.A解析:由知函数在
上有零点,又因为函数在(0,+
)上是减函数,所以函数y=f(x) 在(0,+
)上有且只有一个零点不妨设为
,则
,又因为函数是偶函数,所以
=0并且函数在(0,+
)上是减函数,因此-
是(-
,0)上的唯一零点,所以函数共有两个零点
下列叙述中,是随机变量的有( )
①某工厂加工的零件,实际尺寸与规定尺寸之差;②标准状态下,水沸腾的温度;③某大桥一天经过的车辆数;④向平面上投掷一点,此点坐标.
A.②③ B.①② C.①③④ D.①③
查看习题详情和答案>>设点是抛物线
的焦点,
是抛物线
上的
个不同的点(
).
(1) 当时,试写出抛物线
上的三个定点
、
、
的坐标,从而使得
;
(2)当时,若
,
求证:;
(3) 当时,某同学对(2)的逆命题,即:
“若,则
.”
开展了研究并发现其为假命题.
请你就此从以下三个研究方向中任选一个开展研究:
① 试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分);
② 对任意给定的大于3的正整数,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);
③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).
【评分说明】本小题若填空不止一个研究方向,则以实得分最高的一个研究方向的得分作为本小题的最终得分.
【解析】第一问利用抛物线的焦点为
,设
,
分别过作抛物线
的准线
的垂线,垂足分别为
.
由抛物线定义得到
第二问设,分别过
作抛物线
的准线
垂线,垂足分别为
.
由抛物线定义得
第三问中①取时,抛物线
的焦点为
,
设,
分别过
作抛物线
的准线
垂线,垂足分别为
.由抛物线定义得
,
则,不妨取
;
;
;
解:(1)抛物线的焦点为
,设
,
分别过作抛物线
的准线
的垂线,垂足分别为
.由抛物线定义得
因为,所以
,
故可取满足条件.
(2)设,分别过
作抛物线
的准线
垂线,垂足分别为
.
由抛物线定义得
又因为
;
所以.
(3) ①取时,抛物线
的焦点为
,
设,
分别过
作抛物线
的准线
垂线,垂足分别为
.由抛物线定义得
,
则,不妨取
;
;
;
,
则,
.
故,
,
,
是一个当
时,该逆命题的一个反例.(反例不唯一)
② 设,分别过
作
抛物线的准线
的垂线,垂足分别为
,
由及抛物线的定义得
,即
.
因为上述表达式与点的纵坐标无关,所以只要将这
点都取在
轴的上方,则它们的纵坐标都大于零,则
,
而,所以
.
(说明:本质上只需构造满足条件且的一组
个不同的点,均为反例.)
③ 补充条件1:“点的纵坐标
(
)满足
”,即:
“当时,若
,且点
的纵坐标
(
)满足
,则
”.此命题为真.事实上,设
,
分别过作抛物线
准线
的垂线,垂足分别为
,由
,
及抛物线的定义得,即
,则
,
又由,所以
,故命题为真.
补充条件2:“点与点
为偶数,
关于
轴对称”,即:
“当时,若
,且点
与点
为偶数,
关于
轴对称,则
”.此命题为真.(证略)
查看习题详情和答案>>