网址:http://m.1010jiajiao.com/timu_id_41675[举报]
一、选择题:
ADBAA BCCDC
二、填空题:
11. ; 12. ; 13.
14(i) ③⑤ (ii) ②⑤ 15.(i)7; (ii).
三、解答题:
16.解:(Ⅰ)
…………5分
由成等比数列,知不是最大边
…………6分
(Ⅱ)由余弦定理
得ac=2 …………11分
= …………12分
17.解:(Ⅰ)第一天通过检查的概率为, ………………………2分
第二天通过检查的概率为, …………………………4分
由相互独立事件得两天全部通过检查的概率为. ………………6分
(Ⅱ)第一天通过而第二天不通过检查的概率为, …………8分
第二天通过而第一天不通过检查的概率为, ………………10分
由互斥事件得恰有一天通过检查的概率为. ……………………12分
18.解:方法一
(Ⅰ)取的中点,连结,由知,又,故,所以即为二面角的平面角.
在△中,,,,
由余弦定理有
,
所以二面角的大小是. (6分)
(Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直线上,所以点到平面的距离即为△的边上的高.
故. …(12分)
19.解:(Ⅰ)设
则 ……①
……②
∴②-①得 2d2=0,∴d=p=0
∴ …………6分
(Ⅱ)当an=n时,恒等式为[S(1,n)]2=S(3,n)
证明:
相减得:
∴
相减得:
又
又
∴ ………………………………13分
20.解:(Ⅰ)∵,∴,
又∵,∴,
∴,
∴椭圆的标准方程为. ………(3分)
当的斜率为0时,显然=0,满足题意,
当的斜率不为0时,设方程为,
代入椭圆方程整理得:.
,,.
则
,
而
∴,从而.
综合可知:对于任意的割线,恒有. ………(8分)
(Ⅱ),
即:,
当且仅当,即(此时适合于的条件)取到等号.
∴三角形△ABF面积的最大值是. ………………………………(13分)
21.解:(Ⅰ) ……………………………………………4分
(Ⅱ)或者……………………………………………8分
(Ⅲ)略 ……………………………………13分
雅礼中学08届高三第八次质检数学(文科)试题参考答案
一、选择题:
ADBAA BCCDC
二、填空题:
11. ; 12. ; 13.
14(i) ③⑤ (ii) ②⑤ 15.(i)7; (ii).
三、解答题:
16.解:(Ⅰ)
…………5分
由成等比数列,知不是最大边
…………6分
(Ⅱ)由余弦定理
得ac=2 …………11分
= …………12分
17.解:(Ⅰ)第一天通过检查的概率为, ………………………2分
第二天通过检查的概率为, …………………………4分
由相互独立事件得两天全部通过检查的概率为. ………………6分
(Ⅱ)第一天通过而第二天不通过检查的概率为, …………8分
第二天通过而第一天不通过检查的概率为, ………………10分
由互斥事件得恰有一天通过检查的概率为. ……………………12分
18.解:方法一
(Ⅰ)取的中点,连结,由知,又,故,所以即为二面角的平面角.
在△中,,,,
由余弦定理有
,
所以二面角的大小是. (6分)
(Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直线上,所以点到平面的距离即为△的边上的高.
故. …(12分)
19.解:(Ⅰ)设
则 ……①
……②
∴②-①得 2d2=0,∴d=p=0
∴ …………6分
(Ⅱ)当an=n时,恒等式为[S(1,n)]2=S(3,n)
证明:
相减得:
∴
相减得:
又
又
∴ ………………………………13分
20.解:(Ⅰ)∵,∴,
又∵,∴,
∴,
∴椭圆的标准方程为. ………(3分)
当的斜率为0时,显然=0,满足题意,
当的斜率不为0时,设方程为,
代入椭圆方程整理得:.
,,.
则
,
而
∴,从而.
综合可知:对于任意的割线,恒有. ………(8分)
(Ⅱ),
即:,
当且仅当,即(此时适合于的条件)取到等号.
∴三角形△ABF面积的最大值是. ………………………………(13分)
21.解:(Ⅰ) ……………………………………………4分
(Ⅱ)或者……………………………………………8分
(Ⅲ)略 ……………………………………13分
3 |
3 |
3 |
3 |
(1)求椭圆C的方程;
(2)设(m,n)是椭圆C上的任意一点,圆O:x2+y2=r2(r>0)与椭圆C有4个相异公共点,试分别判断圆O与直线l1:mx+ny=1和l2:mx+ny=4的位置关系. 查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
3 |
| ||
3 |
(1)求椭圆E的方程;
(2)若b为椭圆E的半短轴长,记C(0,b),直线l经过点C且斜率为2,与直线l平行的直线AB过点(1,0)且交椭圆于A、B两点,求△ABC的面积S的值. 查看习题详情和答案>>
|
π |
4 |
2 |
(1)求曲线C1的极坐标方程及C2的直角坐标方程;
(2)点P为C1上任意一点,求P到C2距离的取值范围.