网址:http://m.1010jiajiao.com/timu_id_393774[举报]
1.A 2.D 3.B 4.AC 5.B 6.B 7.B 8.AC 9.ABD 10.BD
11.⑴①③②④ (2分)
⑵D (2分)
⑶是n个点对应的圆心角,t是打点计时器的打点时间间隔 (2分)
⑷没有影响 (1分)
12.⑴乙同学的猜想是对的,当新弹簧所受拉力为F时,其中A弹簧的伸长量,B弹簧的伸长量,而,可得 (3分)
⑵铁架台,刻度尺 (2分)
⑶①将新弹簧悬挂在铁架台上,用刻度尺测出弹簧的长度
②在弹簧下端挂上n个钩码,测出此时弹簧的长度
③将测量结果代入得到的值
④改变n的值,多测几次,取的平均值代入进行验证 (3分)
13.解:设轨道ab与水平面间的夹角为θ,由几何关系可知:
轨道ab的长度 (3分)
由牛顿第二定律可得,小球下滑的加速度 (2分)
由运动学公式得 (2分)
联立以上各式解得 (2分)
14.解:⑴设中央恒星O的质量为M,A行星的质量为m,则由万有引力定律和牛顿第二定律得 (3分)
解得 (1分)
⑵由题意可知:A、B相距最近时,B对A的影响最大,且每隔时间相距最近,设B行星的周期为,则有 (1分)
解得 (1分)
设B行星的运行轨道半径为,根据开普勒第三定律有 (2分)
解得 (1分)
15.解:⑴被困人员在水平方向上做匀速直线运动,在竖直方向上被困人员的位移
,由此可知,被困人员在竖直方向上做初速度为零、加速度的匀加速直线运动 (2分)
由牛顿第二定律可得 (1分 )
解得悬索的拉力 (1分)
⑵被困人员5s末在竖直方向上的速度为 (1分)
合速度 (1分)
竖直方向的位移 ,水平方向的位移,合位移
(2分)
⑶时悬索的长度,旋转半径,由
解得 (2分)
此时被困人员B的受力情况如图所示,由图可知
解得 (2分)
16.⑴米袋在AB上加速时的加速度 (1分)
米袋的速度达到时,滑行的距离,因此米袋在到达B点之前就有了与传送带相同的速度 (2分)
设米袋在CD上运动的加速度大小为a,由牛顿第二定律得
(1分)
代入数据得 (1分)
所以能滑上的最大距离 (1分)
⑵设CD部分运转速度为时米袋恰能到达D点(即米袋到达D点时速度恰好为零),则米袋速度减为之前的加速度为
(1分)
米袋速度小于至减为零前的加速度为
(1分)
由 (2分)
解得 ,即要把米袋送到D点,CD部分的速度 (1分)
米袋恰能运到D点所用时间最长为 (1分)
若CD部分传送带的速度较大,使米袋沿CD上滑时所受摩擦力一直沿皮带向上,则所用时间最短,此种情况米袋加速度一直为。
由 (1分)
所以,所求的时间t的范围为 (1分)
(1)同学们通过查阅资料知道将锌、铜两电极插入水果中,电动势大约会有1伏多一点。甲同学找来了一个土豆做实验,当用量程为0~3V、内阻约50kΩ的电压表测其两极时读数为0.96V,但当他将四个这样的水果电池串起来给标称值为“3V,0.5A”的小灯泡供电时,灯泡并不发光,检查灯泡、线路均无故障。据你猜想,出现这种现象的原因是:_______________________________________。(不要求写分析、推导过程)
(3)为了更准确测定一个“土豆电池”的电动势和内阻,实验室提供了以下一些器材可供选择:
A.电流表A1(量程为0~0 6A,内阻r1=1Ω)
B.灵敏电流表A2(量程为0~0.6mA,内阻r=800Ω)
C.灵敏电流表A3(量程为0~250μA,内阻未知)
D.滑动变阻器R(最大阻值约10Ω)
E.定值电阻R0(阻值2kΩ)
F.变阻箱R′(0~9999Ω)
G.开关S和导线若干
①为了能尽可能准确测定“土豆电池”的电动势和内阻,实验中除了带有锌、铜两电极的水果电池外,还应选择的器材是_____________(填器材前的字母代号);
②利用①问中选择的器材,在方框中画出测量的电路图(图中要标明相关器材的字母代号)。
(14分)学过单摆的周期公式以后,物理兴趣小组的同学们对钟摆产生了兴趣,老师建议他们先研究用厚度和质量分布均匀的长木条(如一把米尺)做成的摆(这种摆被称为复摆),如图 所示。让其在竖直平面内做小角度摆动,C 点为重心,木条长为 L ,周期用 T 表示 。
甲同学猜想:复摆的周期应该与木条的质量有关。
乙同学猜想:复摆的摆长应该是悬点到重心的距离 L/2 。
丙同学猜想:复摆的摆长应该大于 L/2 。理由是:若 OC 段看成细线,线栓在C处,C点以下部分的重心离O点的距离显然大于L/2。
为了研究以上猜想是否正确,同学们进行了下面的实验探索:
(1) 把两个相同的长木条完全重叠在一起,用透明胶(质量不计)粘好,测量其摆动周期,发现与单个长木条摆动时的周期相同,重做多次仍有这样的特点。则证明了甲同学的猜想是 的(选填“正确”或“错误”) 。
(2) 用 To 表示木条长为 L 的复摆看成摆长为 L/2 单摆的周期计算值(To = 2π ),用 T 表示木条长为 L 复摆的实际周期测量值。计算与测量的数据如下表:
由上表可知,复摆的等效摆长 L/2 (选填“大于”、“小于”或“等于”) 。
(3) 为了进一步定量研究,同学们用描点作图法对数据进行处理,所选坐标
如图 13 所示。请在坐标纸上作出 T – To图线,并根据图象中反映出的规律求出
/ = (结果保留三位有效数字,其中 L等 是木条长为L时的等效摆长。T = 2π) 。
板长L(cm) | 25 | 50 | 80 | 100 | 120 | 150 |
周期计算值To /(s) | 0.70 | 1.00 | 1.27 | 1.41 | 1.55 | 1.73 |
周期测量值T/(s) | 0.81 | 1.16 | 1.47 | 1.64 | 1.80 | 2.01 |
(14分)学过单摆的周期公式以后,物理兴趣小组的同学们对钟摆产生了兴趣,老师建议他们
先研究用厚度和质量分布均匀的长木条(如一把米尺)做成的摆(这种摆被称为复摆),如图
所示。让其在竖直平面内做小角度摆动,C 点为重心,木条长为 L ,周期用 T 表示 。
甲同学猜想:复摆的周期应该与木条的质量有关。
乙同学猜想:复摆的摆长应该是悬点到重心的距离 L/2 。
丙同学猜想:复摆的摆长应该大于 L/2 。理由是:若 OC 段看成细线,线栓在C处,
C点以下部分的重心离O点的距离显然大于L/2。
为了研究以上猜想是否正确,同学们进行了下面的实验探索:
(1) 把两个相同的长木条完全重叠在一起,用透明胶(质量不计)粘好,测量其摆动周期,发现与单个长木条摆动时的周期相同,重做多次仍有这样的特点。则证明了甲同学的猜想是 的(选填“正确”或“错误”) 。
(2) 用 To 表示木条长为 L 的复摆看成摆长为 L/2 单摆的周期计算值(To = 2π ),用 T 表示木条长为 L 复摆的实际周期测量值。计算与测量的数据如下表:
板长L(cm) | 25 | 50 | 80 | 100 | 120 | 150 |
周期计算值To /(s) | 0.70 | 1.00 | 1.27 | 1.41 | 1.55 | 1.73 |
周期测量值T/(s) | 0.81 | 1.16 | 1.47 | 1.64 | 1.80 | 2.01 |
由上表可知,复摆的等效摆长 L/2 (选填“大于”、“小于”或“等于”) 。
(3) 为了进一步定量研究,同学们用描点作图法对数据进行处理,所选坐标
如图 13 所示。请在坐标纸上作出 T – To图线,并根据图象中反映出的规律求出
/ = (结果保留三位有效数字,其中 L等 是木条长为L时的等效摆长。T = 2π) 。
查看习题详情和答案>>