摘要:(II)集合M中的元素具有下面的性质:若的定义域为D.则对于任意
网址:http://m.1010jiajiao.com/timu_id_390658[举报]
设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足.”
(I)判断函数是否是集合M中的元素,并说明理由;
(II)集合M中的元素具有下面的性质:若的定义域为D,则对于任意
[m,n]D,都存在[m,n],使得等式成立”,
试用这一性质证明:方程只有一个实数根;
(III)设是方程的实数根,求证:对于定义域中任意的.
查看习题详情和答案>>设M是由满足下列条件的函数构成的集合:“①方程有实数
根;②函数”[来源:学+科+网Z+X+X+K]
(I)判断函数是否是集合M中的元素,并说明理由;
(II)集合M中的元素具有下面的性质:若 的定义域为D,则对于任意
成立。试用这一性
质证明:方程只有一个实数根;
(III)对于M中的函数 的实数根,求证:对于定义
域中任意的当且
查看习题详情和答案>>
(本小题满分14分)
设M是由满足下列条件的函数构成的集合:“①方程有实数根;
②函数的导数满足”
(I)判断函数是否是集合M中的元素,并说明理由;
(II)集合M中的元素具有下面的性质:若的定义域为D,则对于任意[m,n],都存在,使得等式成立。试用这一性质证明:方程只有一个实数根;
(III)设x1是方程的实数根,求证:对于定义域中任意的x2,x3,当时,有
查看习题详情和答案>>