摘要:已知函数上为增函数. (1)求k的取值范围,
网址:http://m.1010jiajiao.com/timu_id_390171[举报]
已知函数f(x)=sin2ωx+
cosωxcos(
-ωx)(ω>0),且函数y=f(x)的图象相邻两条对称轴之间的距为
.
(1)求f(
)的值.
(2)若函数 f(kx+
)(k>0)在区间[-
,
]上单调递增,求k的取值范围.
查看习题详情和答案>>
3 |
π |
2 |
π |
2 |
(1)求f(
π |
6 |
(2)若函数 f(kx+
π |
12 |
π |
6 |
π |
3 |
已知函数f(x)=
,在x=1处取得极值2.
(1)求函数f(x)的解析式
(2)m满足什么条件时,区间(m,2m+1)为函数f(x)的单调增区间;
(3)若P(x0,y0)为f(x)=
图象上任意一点,直线/与.f(x)的图象切于P点,不妨设直线l的斜率为对于任意的x0∈R和对于任意的t∈[4,5],均有k≥c(t2-2t-3)恒成立,求实数c的取值范围.
查看习题详情和答案>>
ax |
x2+b |
(1)求函数f(x)的解析式
(2)m满足什么条件时,区间(m,2m+1)为函数f(x)的单调增区间;
(3)若P(x0,y0)为f(x)=
ax |
x2+b |
已知函数f(x)=ax,g(x)=lnx,其中a∈R.
( I)若函数F(x)=f(x)-g(x)有极值1,求a的值;
( II)若函数G(x)=f[sin(1-x)]+g(x)在区间(0,1)上为增函数,求a的取值范围;
(Ⅲ)证明:
sin
<ln2..
查看习题详情和答案>>
( I)若函数F(x)=f(x)-g(x)有极值1,求a的值;
( II)若函数G(x)=f[sin(1-x)]+g(x)在区间(0,1)上为增函数,求a的取值范围;
(Ⅲ)证明:
n |
k=1 |
1 |
(k+1)2 |
已知函数f(x)的定义域为(0,+∞),若y=
在(0,+∞)上为增函数,则称f(x)为“一阶比增函数”;若y=
在(0,+∞)上为增函数,则称f(x)为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为Ω1,所有“二阶比增函数”组成的集合记为Ω2.
(Ⅰ)已知函数f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求实数h的取值范围;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函数值由下表给出,
求证:d(2d+t-4)>0;
(Ⅲ)定义集合Φ={f(x)|f(x)∈Ω2,且存在常数k,使得任取x∈(0,+∞),f(x)<k},请问:是否存在常数M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,说明理由.
查看习题详情和答案>>
f(x) |
x |
f(x) |
x2 |
(Ⅰ)已知函数f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求实数h的取值范围;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函数值由下表给出,
x | a | b | c | a+b+c |
f(x) | d | d | t | 4 |
(Ⅲ)定义集合Φ={f(x)|f(x)∈Ω2,且存在常数k,使得任取x∈(0,+∞),f(x)<k},请问:是否存在常数M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,说明理由.