摘要: 本解答列出试题的一种解法.如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分.
网址:http://m.1010jiajiao.com/timu_id_380463[举报]
(本小题满分12分)
阅读下面内容,思考后做两道小题。
在一节数学课上,老师给出一道题,让同学们先解,题目是这样的:
已知函数f(x)=kx+b,1≤f(1)≤3,-1≤f(-1)≤1,求Z=f(2)的取值范围。
题目给出后,同学们马上投入紧张的解答中,结果很快出来了,大家解出的结果有很多个,下面是其中甲、乙两个同学的解法:
甲同学的解法:由f(1)=k+b,f(-1)=-k+b得
①+②得:0≤2b≤4,即0≤b≤2 ③
② ×(-1)+①得:-1≤k-b≤1 ④
④+②得:0≤2k≤4 ⑤
③+⑤得:0≤2k+b≤6。
又∵f(2)=2k+b
∴0≤f(2)≤6,0≤Z≤6
乙同学的解法是:由f(1)=k+b,f(-1)=-k+b得
①+②得:0≤2b≤4,即:0≤b≤2 ③
①-②得:2≤2k≤2,即:1≤k≤1
∴k=1,
∵f(2)=2k+b=1+b
由③得:1≤f(2)≤3
∴:1≤Z≤3
(Ⅰ)如果课堂上老师让你对甲、乙两同学的解法给以评价,你如何评价?
(Ⅱ)请你利用线性规划方面的知识,再写出一种解法。
查看习题详情和答案>>(本小题12分)已知圆C满足(1)截y轴所得弦MN长为4;(2)被x轴分成两段圆弧,其弧 长之比为3:1,且圆心在直线y=x上,求圆C的方程。
(为方便学生解答,做了一种情形的辅助图形)
查看习题详情和答案>>
设事件A发生的概率为P,若在A发生的条件下B发生的概率为P′,则由A产生B的概率为PP′,根据这一规律解答下题:一种掷硬币走跳棋的游戏:棋盘上有第0,1,2,3,…,100,共101站,设棋子跳到第n站的概率为Pn,一枚棋子开始在第0站(即P0=1),由棋手每掷一次硬币,棋子向前跳动一次,若硬币出现正面则棋子向前跳动一站,出现反面则向前跳动两站,直到棋子跳到第99站(获胜)或100站(失败)时,游戏结束.已知硬币出现正反面的概率都为
.
(1)求P1,P2,P3,并根据棋子跳到第n+1站的情况,试用Pn,Pn-1表示Pn+1;
(2)设an=Pn-Pn-1(1≤n≤100),求证:数列{an}是等比数列,并求出{an}的通项公式;
(3)求玩该游戏获胜的概率.
查看习题详情和答案>>
1 | 2 |
(1)求P1,P2,P3,并根据棋子跳到第n+1站的情况,试用Pn,Pn-1表示Pn+1;
(2)设an=Pn-Pn-1(1≤n≤100),求证:数列{an}是等比数列,并求出{an}的通项公式;
(3)求玩该游戏获胜的概率.