网址:http://m.1010jiajiao.com/timu_id_372929[举报]
已知中心在原点,焦点在轴上的椭圆
的离心率为
,且经过点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存过点(2,1)的直线
与椭圆
相交于不同的两点
,满足
?若存在,求出直线
的方程;若不存在,请说明理由.
【解析】第一问利用设椭圆的方程为
,由题意得
解得
第二问若存在直线满足条件的方程为
,代入椭圆
的方程得
.
因为直线与椭圆
相交于不同的两点
,设
两点的坐标分别为
,
所以
所以.解得。
解:⑴设椭圆的方程为
,由题意得
解得,故椭圆
的方程为
.……………………4分
⑵若存在直线满足条件的方程为
,代入椭圆
的方程得
.
因为直线与椭圆
相交于不同的两点
,设
两点的坐标分别为
,
所以
所以.
又,
因为,即
,
所以.
即.
所以,解得
.
因为A,B为不同的两点,所以k=1/2.
于是存在直线L1满足条件,其方程为y=1/2x
查看习题详情和答案>>
设椭圆 :
(
)的一个顶点为
,
,
分别是椭圆的左、右焦点,离心率
,过椭圆右焦点
的直线
与椭圆
交于
,
两点.
(1)求椭圆的方程;
(2)是否存在直线 ,使得
,若存在,求出直线
的方程;若不存在,说明理由;
【解析】本试题主要考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。(1)中椭圆的顶点为,即
又因为
,得到
,然后求解得到椭圆方程(2)中,对直线分为两种情况讨论,当直线斜率存在时,当直线斜率不存在时,联立方程组,结合
得到结论。
解:(1)椭圆的顶点为,即
,解得
,
椭圆的标准方程为
--------4分
(2)由题可知,直线与椭圆必相交.
①当直线斜率不存在时,经检验不合题意. --------5分
②当直线斜率存在时,设存在直线为
,且
,
.
由得
, ----------7分
,
,
=
所以,
----------10分
故直线的方程为
或
即或
查看习题详情和答案>>
已知点(
),过点
作抛物线
的切线,切点分别为
、
(其中
).
(Ⅰ)若,求
与
的值;
(Ⅱ)在(Ⅰ)的条件下,若以点为圆心的圆
与直线
相切,求圆
的方程;
(Ⅲ)若直线的方程是
,且以点
为圆心的圆
与直线
相切,
求圆面积的最小值.
【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。
中∵直线与曲线
相切,且过点
,∴
,利用求根公式得到结论先求直线
的方程,再利用点P到直线的距离为半径,从而得到圆的方程。
(3)∵直线的方程是
,
,且以点
为圆心的圆
与直线
相切∴点
到直线
的距离即为圆
的半径,即
,借助于函数的性质圆
面积的最小值
(Ⅰ)由可得,
. ------1分
∵直线与曲线
相切,且过点
,∴
,即
,
∴,或
, --------------------3分
同理可得:,或
----------------4分
∵,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,,
,则
的斜率
,
∴直线的方程为:
,又
,
∴,即
. -----------------7分
∵点到直线
的距离即为圆
的半径,即
,--------------8分
故圆的面积为
. --------------------9分
(Ⅲ)∵直线的方程是
,
,且以点
为圆心的圆
与直线
相切∴点
到直线
的距离即为圆
的半径,即
, ………10分
∴
,
当且仅当,即
,
时取等号.
故圆面积的最小值
.
查看习题详情和答案>>