网址:http://m.1010jiajiao.com/timu_id_370589[举报]
已知函数
(1) 若函数在
上单调,求
的值;
(2)若函数在区间
上的最大值是
,求
的取值范围.
【解析】第一问,
,
、
第二问中,
由(1)知: 当时,
上单调递增
满足条件当
时,
解: (1) ……3分
,
…………….7分
(2)
由(1)知: 当时,
上单调递增
满足条件…………..10分
当时,
且
…………13分
综上所述:
查看习题详情和答案>>
解关于的不等式:
【解析】解:当时,原不等式可变为
,即
(2分)
当时,原不等式可变为
(5分) 若
时,
的解为
(7分)
若时,
的解为
(9分) 若
时,
无解(10分) 若
时,
的解为
(12分综上所述
当时,原不等式的解为
当时,原不等式的解为
当时,原不等式的解为
当时,原不等式的解为
当时,原不等式的解为:
查看习题详情和答案>>
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.
【解析】解:令
.
当时
单调递减;当
时
单调递增,故当
时,
取最小值
于是对一切恒成立,当且仅当
. ①
令则
当时,
单调递增;当
时,
单调递减.
故当时,
取最大值
.因此,当且仅当
时,①式成立.
综上所述,的取值集合为
.
(Ⅱ)由题意知,令
则
令,则
.当
时,
单调递减;当
时,
单调递增.故当
,
即
从而,
又
所以因为函数
在区间
上的图像是连续不断的一条曲线,所以存在
使
即
成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值
对一切x∈R,f(x)
1恒成立转化为
从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
查看习题详情和答案>>
已知幂函数满足
。
(1)求实数k的值,并写出相应的函数的解析式;
(2)对于(1)中的函数,试判断是否存在正数m,使函数
,在区间上的最大值为5。若存在,求出m的值;若不存在,请说明理由。
【解析】本试题主要考查了函数的解析式的求解和函数的最值的运用。第一问中利用,幂函数满足
,得到
因为,所以k=0,或k=1,故解析式为
(2)由(1)知,,
,因此抛物线开口向下,对称轴方程为:
,结合二次函数的对称轴,和开口求解最大值为5.,得到
(1)对于幂函数满足
,
因此,解得
,………………3分
因为,所以k=0,或k=1,当k=0时,
,
当k=1时,,综上所述,k的值为0或1,
。………………6分
(2)函数,………………7分
由此要求,因此抛物线开口向下,对称轴方程为:
,
当时,
,因为在区间
上的最大值为5,
所以,或
…………………………………………10分
解得满足题意
查看习题详情和答案>>