摘要:(Ⅰ)求数列的通项公式,

网址:http://m.1010jiajiao.com/timu_id_370124[举报]

一、选择题:

1.D  2.A  3  B  4.D 5.A 6.D 7.B 8.C   9.A  10.B  11.A  12.B

二、填空题:

13.12           14.6ec8aac122bd4f6e    15   3           16.,①②③④   

三、解答题:

17.解:法(1):①∵6ec8aac122bd4f6e=(1+cosB,sinB)与6ec8aac122bd4f6e=(0,1)所成的角为6ec8aac122bd4f6e

6ec8aac122bd4f6e与向量6ec8aac122bd4f6e=(1,0)所成的角为6ec8aac122bd4f6e                                                    

6ec8aac122bd4f6e,即6ec8aac122bd4f6e                                                   (2分)

而B∈(0,π),∴6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,∴B=6ec8aac122bd4f6e。                             (4分)

②令AB=c,BC=a,AC=b

∵B=6ec8aac122bd4f6e,∴b2=a2+c2-2accosB=a2+c2-ac=6ec8aac122bd4f6e,∵a,c>0。             (6分)

∴a2+c26ec8aac122bd4f6e,ac≤6ec8aac122bd4f6e (当且仅当a=c时等号成立)

∴12=a2+c2-ac≥6ec8aac122bd4f6e6ec8aac122bd4f6e                                               (8分)

∴(a+c)2≤48,∴a+c≤6ec8aac122bd4f6e,∴a+b+c≤6ec8aac122bd4f6e+6ec8aac122bd4f6e=6ec8aac122bd4f6e(当且仅当a=c时取等号)

故ΔABC的周长的最大值为6ec8aac122bd4f6e。                                                           (10分)

法2:(1)cos<6ec8aac122bd4f6e6ec8aac122bd4f6e>=cos6ec8aac122bd4f6e

6ec8aac122bd4f6e,                                                                                   (2分)

即2cos2B+cosB-1=0,∴cosB=6ec8aac122bd4f6e或cosB=-1(舍),而B∈(0,π),∴B=6ec8aac122bd4f6e (4分)

(2)令AB=c,BC=a,AC=b,ΔABC的周长为6ec8aac122bd4f6e,则6ec8aac122bd4f6e=a+c+6ec8aac122bd4f6e

而a=b?6ec8aac122bd4f6e,c=b?6ec8aac122bd4f6e                                      (2分)

6ec8aac122bd4f6e=6ec8aac122bd4f6e=6ec8aac122bd4f6e

=6ec8aac122bd4f6e                                (8分)

∵A∈(0,6ec8aac122bd4f6e),∴A-6ec8aac122bd4f6e

当且仅当A=6ec8aac122bd4f6e时,6ec8aac122bd4f6e。                                         (10分)

 18.解法一:(1)∵PA⊥底面ABCD,BC6ec8aac122bd4f6e平面AC,∴PA⊥BC

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC

(2)∵AB∥CD,∠BAD=120°,∴∠ADC=60°,又AD=CD=1

∴ΔADC为等边三角形,且AC=1,取AC的中点O,则DO⊥AC,又PA⊥底面ABCD,

∴PA⊥DO,∴DO⊥平面PAC,过O作OH⊥PC,垂足为H,连DH

由三垂成定理知DH⊥PC,∴∠DHO为二面角D-PC-A的平面角

由OH=6ec8aac122bd4f6e,DO=6ec8aac122bd4f6e,∴tan∠DHO=6ec8aac122bd4f6e=2

∴二面角D-PC-A的大小的正切值为2。

6ec8aac122bd4f6e(3)设点B到平面PCD的距离为d,又AB∥平面PCD

∴VA-PCD=VP-ACD,即6ec8aac122bd4f6e

6ec8aac122bd4f6e  即点B到平面PCD的距离为6ec8aac122bd4f6e

19.解:(1)第一和第三次取球对第四次无影响,计第四次摸红球为事件A

①第二次摸红球,则第四次摸球时袋中有4红球概率为

6ec8aac122bd4f6e                                                                            (2分)

②第二次摸白球,则第四次摸球时袋中有5红2白,摸红球概率为

6ec8aac122bd4f6e                                                                           (3分)

∴P(A)=6ec8aac122bd4f6e,即第四次恰好摸到红球的概率为6ec8aac122bd4f6e。(6分)(注:无文字说明扣一分)

(2)由题设可知ξ的所有可能取值为:ξ=0,1,2,3。P(ξ=0)=6ec8aac122bd4f6e

P(ξ=1)=6ec8aac122bd4f6e;P(ξ=2)=6ec8aac122bd4f6e

P(ξ=3)=6ec8aac122bd4f6e。故随机变量ξ的分布列为:

ξ

0

1

2

6ec8aac122bd4f6e3

P

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

∴Eξ=6ec8aac122bd4f6e(个),故Eξ=6ec8aac122bd4f6e(个)                                          (1

20.解:(1)6ec8aac122bd4f6e6ec8aac122bd4f6e

故数列6ec8aac122bd4f6e是首项为2,公比为2的等比数列。

6ec8aac122bd4f6e6ec8aac122bd4f6e…………………………………………4分

(2)6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

②―①得6ec8aac122bd4f6e,即6ec8aac122bd4f6e

6ec8aac122bd4f6e

④―③得6ec8aac122bd4f6e,即6ec8aac122bd4f6e

所以数列6ec8aac122bd4f6e是等差数列……………………9分

(3)6ec8aac122bd4f6e………………………………11分

6ec8aac122bd4f6e,则6ec8aac122bd4f6e6ec8aac122bd4f6e

…………13分

21.解:(1)设6ec8aac122bd4f6e6ec8aac122bd4f6e.

整理得AB:bx-ay-ab=0与原点距离6ec8aac122bd4f6e,又6ec8aac122bd4f6e

联立上式解得b=1,∴c=2,6ec8aac122bd4f6e.∴双曲线方程为6ec8aac122bd4f6e.

(2)设C(x1,y1),D(x2,y2)设CD中点M(x0,y0),

6ec8aac122bd4f6e,∴|AC|=|AD|,∴AM⊥CD.

联立直线6ec8aac122bd4f6e与双曲线的方程得6ec8aac122bd4f6e,整理得(1-3k2)x2-6kmx-3m2-3=0,且6ec8aac122bd4f6e.

6ec8aac122bd4f6e ,    6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e,∴AM⊥CD.

6ec8aac122bd4f6e,整理得6ec8aac122bd4f6e

6ec8aac122bd4f6e且k2>0,,代入6ec8aac122bd4f6e中得6ec8aac122bd4f6e.

6ec8aac122bd4f6e.

22.解:(1)∵6ec8aac122bd4f6e(x)=3ax2+sinθx-2

由题设可知:6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e∴sinθ=1。(2分)

从而a=6ec8aac122bd4f6e,∴f(x)=6ec8aac122bd4f6e,而又由f(1)=6ec8aac122bd4f6e得,c=6ec8aac122bd4f6e

∴f(x)=6ec8aac122bd4f6e即为所求。                                                     (4分)

(2)6ec8aac122bd4f6e(x)=x2+x-2=(x+2)(x-1)易知f(x)在(-∞,-2)及(1,+∞)上均为增函数,在(-2,1)上为减函数。

(i)当m>1时,f(x)在[m,m+3]上递增。故f(x)max=f(m+3),f(x)min=f(m)

由f(m+3)-f(m)=6ec8aac122bd4f6e(m+3)3+6ec8aac122bd4f6e(m+3)2-2(m+3)-6ec8aac122bd4f6e=3m2+12m+6ec8aac122bd4f6e得-5≤m≤1。这与条件矛盾故舍。                                                                        (6分)

(ii)当0≤m≤1时,f(x)在[m,1]上递减,在[1,m+3]上递增。

∴f(x)min=f(1),f(x)max={f(m),f(m+3)}max

又f(m+3)-f(m)=3m2+12m+6ec8aac122bd4f6e=3(m+2)2-6ec8aac122bd4f6e>0(0≤m≤1),∴f(x)max=f(m+3)

∴|f(x1)-f(x2)| ≤f(x)max-f(x)min=f(m+3)-f(1) ≤f(4)-f(1)=6ec8aac122bd4f6e恒成立

故当0≤m≤1原式恒成立。                                                                        (8分)

综上:存在m且m∈[0,1]合乎题意。                                                     (9分)

(3)∵a1∈(0,16ec8aac122bd4f6e,∴a26ec8aac122bd4f6e,故a2>2

假设n=k(k≥2,k∈N*)时,ak>2。则ak+1=f(ak)>f(2)=8>2

故对于一切n(n≥2,n∈N*)均有an>2成立。                                        (11分)

令g(x)=6ec8aac122bd4f6e

6ec8aac122bd4f6e=6ec8aac122bd4f6e

当x∈(0,2)时6ec8aac122bd4f6e(x)<0,x∈(2,+∞)时,6ec8aac122bd4f6e(x)>0,

∴g(x)在x∈[2,+∞6ec8aac122bd4f6e时为增函数。

而g(2)=8-8ln2>0,即当x∈[2,+∞6ec8aac122bd4f6e时,g(x)≥g(2)>0恒成立。

∴g(an)>0,(n≥2)也恒成立。即:an+1>8lnan(n≥2)恒成立。

而当n=1时,a2=8,而8lna1≤0,∴a2>8lna1显然成立。

综上:对一切n∈N*均有an+1>8lnan成立。                                 

 

 

 

 

本资料由《七彩教育网》www.7caiedu.cn 提供!

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网