网址:http://m.1010jiajiao.com/timu_id_370111[举报]
一、选择题:
1.D 2.A 3 B 4.D 5.A 6.D 7.B 8.C 9.A 10.B 11.A 12.B
二、填空题:
三、解答题:
17.解:法(1):①∵=(1+cosB,sinB)与=(0,1)所成的角为
②令AB=c,BC=a,AC=b
∵B=,∴b2=a2+c2-2accosB=a2+c2-ac=,∵a,c>0。 (6分)
∴(a+c)2≤48,∴a+c≤,∴a+b+c≤+=(当且仅当a=c时取等号)
即2cos2B+cosB-1=0,∴cosB=或cosB=-1(舍),而B∈(0,π),∴B= (4分)
(2)令AB=c,BC=a,AC=b,ΔABC的周长为,则=a+c+
18.解法一:(1)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC
∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC
(2)∵AB∥CD,∠BAD=120°,∴∠ADC=60°,又AD=CD=1
∴ΔADC为等边三角形,且AC=1,取AC的中点O,则DO⊥AC,又PA⊥底面ABCD,
∴PA⊥DO,∴DO⊥平面PAC,过O作OH⊥PC,垂足为H,连DH
由三垂成定理知DH⊥PC,∴∠DHO为二面角D-PC-A的平面角
∴二面角D-PC-A的大小的正切值为2。
(3)设点B到平面PCD的距离为d,又AB∥平面PCD
19.解:(1)第一和第三次取球对第四次无影响,计第四次摸红球为事件A
①第二次摸红球,则第四次摸球时袋中有4红球概率为
②第二次摸白球,则第四次摸球时袋中有5红2白,摸红球概率为
∴P(A)=,即第四次恰好摸到红球的概率为。(6分)(注:无文字说明扣一分)
(2)由题设可知ξ的所有可能取值为:ξ=0,1,2,3。P(ξ=0)=;
ξ
0
1
2
P
…………13分
(2)设C(x1,y1),D(x2,y2)设CD中点M(x0,y0),
联立直线与双曲线的方程得,整理得(1-3k2)x2-6kmx
(2)(x)=x2+x-2=(x+2)(x-1)易知f(x)在(-∞,-2)及(1,+∞)上均为增函数,在(-2,1)上为减函数。
(i)当m>1时,f(x)在[m,m+3]上递增。故f(x)max=f(m+3),f(x)min=f(m)
由f(m+3)-f(m)=(m+3)3+(m+3)2-2(m+3)-=
(ii)当0≤m≤1时,f(x)在[m,1]上递减,在[1,m+3]上递增。
∴f(x)min=f(1),f(x)max={f(m),f(m+3)}max
又f(m+3)-f(m)=
∴|f(x1)-f(x2)| ≤f(x)max-f(x)min=f(m+3)-f(1) ≤f(4)-f(1)=恒成立
故当0≤m≤1原式恒成立。 (8分)
综上:存在m且m∈[0,1]合乎题意。 (9分)
假设n=k(k≥2,k∈N*)时,ak>2。则ak+1=f(ak)>f(2)=8>2
故对于一切n(n≥2,n∈N*)均有an>2成立。 (11分)
当x∈(0,2)时(x)<0,x∈(2,+∞)时,(x)>0,
而g(2)=8-8ln2>0,即当x∈[2,+∞时,g(x)≥g(2)>0恒成立。
∴g(an)>0,(n≥2)也恒成立。即:an+1>8lnan(n≥2)恒成立。
而当n=1时,a2=8,而8lna1≤0,∴a2>8lna1显然成立。
综上:对一切n∈N*均有an+1>8lnan成立。
本资料由《七彩教育网》www.7caiedu.cn 提供!