网址:http://m.1010jiajiao.com/timu_id_35795[举报]
A.电压表V(量程4V,内阻Rv约10 k)
B.电流表A1(量程100 mA,内阻约5 )
C.电流表A2(量程2 mA,内阻约50 )
D.滑动变阻器R(0~40 。额定电流1 A)
E.电阻箱Ro(0~999.9 )
F.开关S-只、导线若干
①小刚采用伏安法测定Rx的阻值,他使用的电是待测的锂电池。图甲是他连接的部分实验器材,请你用笔划线在答题卡上完成实物连接。小刚选用的电流表应是 (选填“A1”或“A2”);他用电压表的读数除以电流表的读数作为Rx的测量值,则测量值 真实值(填“大于”或“小于”);
②小聪和小明设计了图乙所示的电路图测量锂电池的电动势E和内阻r。
a.小聪的实验操作是:闭合开关S.调整电阻箱的阻值为R1时,读出电压表的示数为Ul;调整
电阻箱的阻值为R2时,读出电压表的示数为U2。根据小聪测出的数据可求得该电池的电动势,其
表达式为E= ;
b.小明认为用线性图像处理数据更便于分析。他在实验中多次改变电阻箱阻值,获取了多组数据,画出的图像为一条直线(见图丙)。则该图像的函数表达式为 ,由图丙可知该电池的电动势E= V、内阻r=____。
第十部分 磁场
第一讲 基本知识介绍
《磁场》部分在奥赛考刚中的考点很少,和高考要求的区别不是很大,只是在两处有深化:a、电流的磁场引进定量计算;b、对带电粒子在复合场中的运动进行了更深入的分析。
一、磁场与安培力
1、磁场
a、永磁体、电流磁场→磁现象的电本质
b、磁感强度、磁通量
c、稳恒电流的磁场
*毕奥-萨伐尔定律(Biot-Savart law):对于电流强度为I 、长度为dI的导体元段,在距离为r的点激发的“元磁感应强度”为dB 。矢量式d= k,(d表示导体元段的方向沿电流的方向、为导体元段到考查点的方向矢量);或用大小关系式dB = k结合安培定则寻求方向亦可。其中 k = 1.0×10?7N/A2 。应用毕萨定律再结合矢量叠加原理,可以求解任何形状导线在任何位置激发的磁感强度。
毕萨定律应用在“无限长”直导线的结论:B = 2k ;
*毕萨定律应用在环形电流垂直中心轴线上的结论:B = 2πkI ;
*毕萨定律应用在“无限长”螺线管内部的结论:B = 2πknI 。其中n为单位长度螺线管的匝数。
2、安培力
a、对直导体,矢量式为 = I;或表达为大小关系式 F = BILsinθ再结合“左手定则”解决方向问题(θ为B与L的夹角)。
b、弯曲导体的安培力
⑴整体合力
折线导体所受安培力的合力等于连接始末端连线导体(电流不变)的的安培力。
证明:参照图9-1,令MN段导体的安培力F1与NO段导体的安培力F2的合力为F,则F的大小为
F =
= BI
= BI
关于F的方向,由于ΔFF2P∽ΔMNO,可以证明图9-1中的两个灰色三角形相似,这也就证明了F是垂直MO的,再由于ΔPMO是等腰三角形(这个证明很容易),故F在MO上的垂足就是MO的中点了。
证毕。
由于连续弯曲的导体可以看成是无穷多元段直线导体的折合,所以,关于折线导体整体合力的结论也适用于弯曲导体。(说明:这个结论只适用于匀强磁场。)
⑵导体的内张力
弯曲导体在平衡或加速的情形下,均会出现内张力,具体分析时,可将导体在被考查点切断,再将被切断的某一部分隔离,列平衡方程或动力学方程求解。
c、匀强磁场对线圈的转矩
如图9-2所示,当一个矩形线圈(线圈面积为S、通以恒定电流I)放入匀强磁场中,且磁场B的方向平行线圈平面时,线圈受安培力将转动(并自动选择垂直B的中心轴OO′,因为质心无加速度),此瞬时的力矩为
M = BIS
几种情形的讨论——
⑴增加匝数至N ,则 M = NBIS ;
⑵转轴平移,结论不变(证明从略);
⑶线圈形状改变,结论不变(证明从略);
*⑷磁场平行线圈平面相对原磁场方向旋转α角,则M = BIScosα ,如图9-3;
证明:当α = 90°时,显然M = 0 ,而磁场是可以分解的,只有垂直转轴的的分量Bcosα才能产生力矩…
⑸磁场B垂直OO′轴相对线圈平面旋转β角,则M = BIScosβ ,如图9-4。
证明:当β = 90°时,显然M = 0 ,而磁场是可以分解的,只有平行线圈平面的的分量Bcosβ才能产生力矩…
说明:在默认的情况下,讨论线圈的转矩时,认为线圈的转轴垂直磁场。如果没有人为设定,而是让安培力自行选定转轴,这时的力矩称为力偶矩。
二、洛仑兹力
1、概念与规律
a、 = q,或展开为f = qvBsinθ再结合左、右手定则确定方向(其中θ为与的夹角)。安培力是大量带电粒子所受洛仑兹力的宏观体现。
b、能量性质
由于总垂直与确定的平面,故总垂直 ,只能起到改变速度方向的作用。结论:洛仑兹力可对带电粒子形成冲量,却不可能做功。或:洛仑兹力可使带电粒子的动量发生改变却不能使其动能发生改变。
问题:安培力可以做功,为什么洛仑兹力不能做功?
解说:应该注意“安培力是大量带电粒子所受洛仑兹力的宏观体现”这句话的确切含义——“宏观体现”和“完全相等”是有区别的。我们可以分两种情形看这个问题:(1)导体静止时,所有粒子的洛仑兹力的合力等于安培力(这个证明从略);(2)导体运动时,粒子参与的是沿导体棒的运动v1和导体运动v2的合运动,其合速度为v ,这时的洛仑兹力f垂直v而安培力垂直导体棒,它们是不可能相等的,只能说安培力是洛仑兹力的分力f1 = qv1B的合力(见图9-5)。
很显然,f1的合力(安培力)做正功,而f不做功(或者说f1的正功和f2的负功的代数和为零)。(事实上,由于电子定向移动速率v1在10?5m/s数量级,而v2一般都在10?2m/s数量级以上,致使f1只是f的一个极小分量。)
☆如果从能量的角度看这个问题,当导体棒放在光滑的导轨上时(参看图9-6),导体棒必获得动能,这个动能是怎么转化来的呢?
若先将导体棒卡住,回路中形成稳恒的电流,电流的功转化为回路的焦耳热。而将导体棒释放后,导体棒受安培力加速,将形成感应电动势(反电动势)。动力学分析可知,导体棒的最后稳定状态是匀速运动(感应电动势等于电源电动势,回路电流为零)。由于达到稳定速度前的回路电流是逐渐减小的,故在相同时间内发的焦耳热将比导体棒被卡住时少。所以,导体棒动能的增加是以回路焦耳热的减少为代价的。
2、仅受洛仑兹力的带电粒子运动
a、⊥时,匀速圆周运动,半径r = ,周期T =
b、与成一般夹角θ时,做等螺距螺旋运动,半径r = ,螺距d =
这个结论的证明一般是将分解…(过程从略)。
☆但也有一个问题,如果将分解(成垂直速度分量B2和平行速度分量B1 ,如图9-7所示),粒子的运动情形似乎就不一样了——在垂直B2的平面内做圆周运动?
其实,在图9-7中,B1平行v只是一种暂时的现象,一旦受B2的洛仑兹力作用,v改变方向后就不再平行B1了。当B1施加了洛仑兹力后,粒子的“圆周运动”就无法达成了。(而在分解v的处理中,这种局面是不会出现的。)
3、磁聚焦
a、结构:见图9-8,K和G分别为阴极和控制极,A为阳极加共轴限制膜片,螺线管提供匀强磁场。
b、原理:由于控制极和共轴膜片的存在,电子进磁场的发散角极小,即速度和磁场的夹角θ极小,各粒子做螺旋运动时可以认为螺距彼此相等(半径可以不等),故所有粒子会“聚焦”在荧光屏上的P点。
4、回旋加速器
a、结构&原理(注意加速时间应忽略)
b、磁场与交变电场频率的关系
因回旋周期T和交变电场周期T′必相等,故 =
c、最大速度 vmax = = 2πRf
5、质谱仪
速度选择器&粒子圆周运动,和高考要求相同。
第二讲 典型例题解析
一、磁场与安培力的计算
【例题1】两根无限长的平行直导线a、b相距40cm,通过电流的大小都是3.0A,方向相反。试求位于两根导线之间且在两导线所在平面内的、与a导线相距10cm的P点的磁感强度。
【解说】这是一个关于毕萨定律的简单应用。解题过程从略。
【答案】大小为8.0×10?6T ,方向在图9-9中垂直纸面向外。
【例题2】半径为R ,通有电流I的圆形线圈,放在磁感强度大小为B 、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。
【解说】本题有两种解法。
方法一:隔离一小段弧,对应圆心角θ ,则弧长L = θR 。因为θ →
查看习题详情和答案>>1.[物理——选修2-2] (1)常见的传动方式有__________、__________、__________和齿轮传动等。齿轮传动的传动比是主动轮与__________的转速之比,传动比等于__________与__________的齿数之比。
(2)液压千斤顶是利用密闭容器内的液体能够把液体所受到的压强向各个方向传递的原理制成的。图为一小型千斤顶的结构示意图。大活塞A的直径D1=20 cm,小活塞B的直径D2=5 cm,手柄的长度OC=50 cm,小活塞与手柄的连接点到转轴O的距离DO=10 cm。现用此千斤顶使质量m=4×103 kg的重物升高了h=10 cm。g取10 m/s2,求
(i)若此千斤顶的效率为80%,在这一过程中人做的功为多少?
(ii)若此千斤顶的效率为100%,当重物上升时,人对手柄的作用力F至少要多大?
2.[物理——选修3-3]
(1)带有活塞的气缸内封闭一定量的理想气体。气体开始处于状态a,然后经过过程ab到达状态b或经过过程ac到达状态c,b、c状态温度相同,如V-T图所示。设气体在状态b和状态c的压强分别为pb和pc,在过程ab和ac中吸收的热量分别为Qab和Qac,则___________(填入选项前的字母,有填错的不得分)
A.pb>pc,Qab>Qac B.pb>pc,Qab<Qac
C.pb<pc,Qab>Qac D.pb<pc,Qab<Qac
(2)图中系统由左右两个侧壁绝热、底部导热、截面均为S的容器组成。左容器足够高,上端敞开,右容器上端由导热材料封闭。两容器的下端由可忽略容积的细管连通。
容器内两个绝热的活塞A、B下方封有氮气,B上方封有氢气。大气的压强为p0,温度为T0=273 K,两活塞因自身重量对下方气体产生的附加压强均为0.1p0。系统平衡时,各气柱的高度如图所示。现将系统底部浸入恒温热水槽中,再次平衡时A上升了一定高度。用外力将A缓慢推回第一次平衡时的位置并固定,第三次达到平衡后,氢气柱高度为0.8h。氮气和氢气均可视为理想气体。求
(i)第二次平衡时氮气的体积;
(ii)水的温度。
3.[物理——选修3-4]
(1)某振动系统的固有频率为f0,在周期性驱动力的作用下做受迫振动,驱动力的频率为f。若驱动力的振幅保持不变,下列说法正确的是______(填入选项前的字母,有填错的不得分)
A.当f<f0时,该振动系统的振幅随f增大而减小
B.当f>f0时,该振动系统的振幅随f减小而增大
C.该振动系统的振动稳定后,振动的频率等于f0
D.该振动系统的振动稳定后,振动的频率等于f
(2)一棱镜的截面为直角三角形ABC,∠A=30°,斜边AB=a。棱镜材料的折射率为。在此截面所在的平面内,一条光线以45°的入射角从AC边的中点M射入棱镜。画出光路图,并求光线从棱镜射出的点的位置(不考虑光线沿原路返回的情况)。
4.[物理——选修3-5]
(1)关于光电效应,下列说法正确的是________(填入选项前的字母,有填错的不得分)
A.极限频率越大的金属材料逸出功越大
B.只要光照射的时间足够长,任何金属都能产生光电效应
C.从金属表面出来的光电子的最大初动能越大,这种金属的逸出功越小
D.入射光的光强一定时,频率越高,单位时间内逸出的光电子数就越多
(2)两个质量分别为M1和M2的劈A和B,高度相同,放在光滑水平面上。A和B的倾斜面都是光滑曲面,曲面下端与水平面相切,如图所示。一质量为m的物块位于劈A的倾斜面上,距水平面的高度为h。物块从静止开始滑下,然后又滑上劈B。求物块在B上能够达到的最大高度。
查看习题详情和答案>>光电计时器是一种研究物体运动情况的常见仪器.当有物体从光电门通过时,光电计时器就可以显示物体的挡光时间,现利用如图甲所示装置探究物体的加速度与合外力、质量关系,其NQ是水平桌面,PQ是一端带有滑轮的长木板,l、2是固定在木板上的两个光电门(与之连接的两个光电计时器没有画出)。小车上固定着用于挡光的窄片K,测得其宽度为d,让小车从木板的顶端滑下,光电门各自连接的计时器显示窄片K的挡光时间分别为t1和t2。
(1)该实验中,在改变小车的质量M或沙桶的总质量m时,为保证小车所受合外力大小约等于mg需要满足的条件是 ;
(2)为了计算出小车的加速度,除了测量d、t1和t2之外,还需要测量 ,若上述测量量用x表示,则用这些物理量计算加速度的表达式为a= ;
(3)某位同学经过测量、计算得到如下表数据,请在图乙中作出小车加速度与所受合外力的关系图像。
(4)由图象可以看出,该实验存在着较大的误差,产生误差的主要原因是 。
查看习题详情和答案>>
光电计时器是一种研究物体运动情况的常见仪器.当有物体从光电门通过时,光电计时器就可以显示物体的挡光时间,现利用如图甲所示装置探究物体的加速度与合外力、质量关系,其NQ是水平桌面,PQ是一端带有滑轮的长木板,l、2是固定在木板上的两个光电门(与之连接的两个光电计时器没有画出)。小车上固定着用于挡光的窄片K,测得其宽度为d,让小车从木板的顶端滑下,光电门各自连接的计时器显示窄片K的挡光时间分别为t1和t2。
(1)该实验中,在改变小车的质量M或沙桶的总质量m时,为保证小车所受合外力大小约等于mg需要满足的条件是 ;
(2)为了计算出小车的加速度,除了测量d、t1和t2之外,还需要测量 ,若上述测量量用x表示,则用这些物理量计算加速度的表达式为a= ;
(3)某位同学经过测量、计算得到如下表数据,请在图乙中作出小车加速度与所受合外力的关系图像。
(4)由图象可以看出,该实验存在着较大的误差,产生误差的主要原因是 。
查看习题详情和答案>>