摘要:当时.有,故.
网址:http://m.1010jiajiao.com/timu_id_34656[举报]
已知函数=
.
(Ⅰ)当时,求不等式
≥3的解集;
(Ⅱ) 若≤
的解集包含
,求
的取值范围.
【命题意图】本题主要考查含绝对值不等式的解法,是简单题.
【解析】(Ⅰ)当时,
=
,
当≤2时,由
≥3得
,解得
≤1;
当2<<3时,
≥3,无解;
当≥3时,由
≥3得
≥3,解得
≥8,
∴≥3的解集为{
|
≤1或
≥8};
(Ⅱ) ≤
,
当∈[1,2]时,
=
=2,
∴,有条件得
且
,即
,
故满足条件的的取值范围为[-3,0]
查看习题详情和答案>>
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201011/70/e15297e2.png)
如图所示,正在亚丁湾执行护航任务的某导弹护卫舰,突然收到一艘商船的求救信号,紧急前往相关海域.到达相关海域O处后发现,在南偏西20°、5海里外的洋面M处有一条海盗船,它正以每小时20海里的速度向南偏东40°的方向逃窜.某导弹护卫舰当即施放载有突击队员的快艇进行拦截,快艇以每小时30海里的速度向南偏东θ°的方向全速追击.请问:快艇能否追上海盗船?如果能追上,请求出sin(θ°+20°)的值;如果未能追上,请说明理由.(假设海面上风平浪静、海盗船逃窜的航向不变、快艇运转正常无故障等)
查看习题详情和答案>>
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212418463739992/SYS201310232124184637399015_ST/images0.png)